Microscopic identification of
dissipative modes
in relativistic field theories



goal

understand long-time evolution of nonequilibrium state
from microscopic interactions between particles

= dynamics at the critical point

——> naive perturbation breaks down

dynamics at the QCD critical point
from dynamics of quarks and gluons

contents

1. identify dissipative modes from microscopic theories
using resummation by two-particle irreducible (2PI) formalism

YS, H. Fuijii, K. Itakura and O. Morimatsu, arXiv:1309.4892

2. evaluate the dynamic exponent z
(the divergence of the relaxation time at the critical point)



1. Background



Hydrodynamic time scales
and secularities

microscopic perturbation I

- perturbation >< -+ >Q< 4 ...

~ expansion by a number of collisions

e.g. cross section

- effective theories of long distance and time (®>& t>71)

( 6: correlation length, 7 : correlation time)

e.g. heat diffusion eq. 3tQ = anQ

hydrodynamic time scales multi-particle scatterings (higher order terms)
(t > T > collision time) becomes important.

breakdown of naive perturbation (secularity)



Resummation framework

multi-particle scattering processes

$

infinite series of self-energies

\ 4

resummation is useful

two-particle-irreducible (2P1) effective action

systematically resums infinite series of self-energies

through solving Schwinger-Dyson eq. self-consistently

Apply this framework to dynamics in
long-distance and -time scales such as critical dynamics



Relaxation in near-equilibrium state

- relaxation (7T # T,) ©

external field
(t=0) —t/T . correlation time

. ilibri >>
equilibrium ka\ relaxes to equilibrium (t>>1)

(t<0) )
t

" relaxation at the critical point (T = Tc)
(dynamic critical phenomena)

- large fluctuations, correlation length (£ — 00 )

- divergence of correlation time 7 ~ gz

- divergences of transport coefficients

e . z: dynamic critical exponent
(diffusion constant, heat conductivity, ...) ‘ y P




Critical phenomena
and dissipative modes

critical dynamics the longest time-scale in the system. (£ ~ |T' —T.|™", T ~ &%)

I " microscopic details are integrated out (white noises)

= critical dynamics can be approximately described by
hydrodynamic modes and order parameter

solution of time evolution

propagating modes
e.g. sound wave

+ics|p|t

wave eq. ~ @ (move)

dissipative modes
e.g. heat diffusion

—I'p*t  (damp)

diffusion eq. ~ e

Dissipative modes are relevant in critical regions
from scale transformation

identifying dissipative modes is important to deal with critical dynamics



2. ldentification of dissipative modes
(T # 1)

YS, H. Fujii, K. Itakura and O. Morimatsu, arXiv:1309.4892



Setup

- model
relativistic O(N) ¢* theory @ order parameter (g =1,---,N)
5|1 " mg Ao 2
Slel = | dtd’z | 50upa(2)0"0a(2) — =~ Pa(2)Pa() — 5 (Pa(2)pa(@))

verify how  relaxes in long-time scale (low frequency)

* linear response theory

relaxation of (£ in near-equilibrium state corresponds to

retarded Green function Gr in the equilibrium state

Gr(t, ) = 0(t) Tr{e ™ [p(t, ), ©(0,0)]}

- 1/N expansion : typical non-perturbative expansion



Dissipative condition
(T # T¢)

Phenomenology

Relativistic field theory

dissipative condition (py < |p|)



Order of Self-energies

dissipation is a result of scatterings between particles in heat bath

» self-energies must have imaginary parts.

* 1/N expansion at LO

EIIJ{O — Q no imaginary parts (only mass shift)

- 1/N expansion at NLO

NLO s . P
YNLO — Lo U ) m@<
SO — S~
imaginary

scattering processes exist
part &P

evaluate the self-energy at NLO



Self-energy of 1PI-NLO

YS, H. Fujii, K. Itakura and O. Morimatsu, arXiv:1309.4892

In 1PI-framework,

all internal lines of EIPI(p) » spectral function of Go(p)

no widths
are free propagators. p(p) = 2Im {pp) >
O Vp+m? Po
1PI —

(p) off-shell (p, =0, p=0)

on-shell
= —ImzR(pO, 0) =

» dpo Po=0 on-shell

on-shell

scattering process . : : -1
(off + on > on + on) - kinematically forbidden ['=~ = ()

No dissipative modes in 1P1-NLO,
although the self-energy contains scattering processes.




Self-energy of 2PI-NLO

all internal lines of E%{PI(p) - full two-point function G(p)

are full propagators.

p(p) has finite widths >
0 VP2 + m2 10
2P1 _
ER, (p)_SO °t po_()p 0
i~ SO0-OX
‘ 310 mYg (po, 0)
scattering processes ‘ kinematically allowed

between off-shell particles

! 75 0 ‘ dissipative modes exist in 2PI-NLO ‘




- dissipative mode is a result of multi-particle scatterings
- 1PI-1/N expansion at NLO fails to extract dissipative processes

- dissipative modes appear in 2PI-1/N expansion at NLO

- dissipative modes play the important role in critical dynamics



3. Dynamic critical exponent

(T — TC)



Dynamic scale invariance

Correlation-length and -time
diverge at T = Tc

‘ The system becomes invariant

under dynamic scale transformation

leT—Tc|_V, 'TNgz

p—bp, pp—bp (b>1)

The retarded two-point function changes :

1
Gr(po, p) = b*~" Gr(b*po, bp) ~ P27 F (@)

7] . static (po = 0 ) exponent, 2 : ratio between powers of P0 and P

F'(z) : shape function



Scaling form

useful forms to evaluate critical exponents

1 Do B
Gr(po,P) ~ P2 F <I?> (T =T,)

Both G (0, p) and Ggr(po, 0) are finite
» F(0) = const., lim F(z)= 2~ (2-n)/z

T—00




The exponent z at O(1)

two-point function has the dissipative term in the infrared region

1 1 1

G [ —
r(P) —il'1lpg+p? p? 1-— iI‘—li%

Gr(p) ~ : F(p—o)

pz

> — °) Dissipative term determines z at LO

If one evaluates the exponent z in the framework without dissipative terms,
one obtains a wrong result even at LO.

1PI-1/N at NLO : no dissipative terms

Gr(p) ~ 1 » “(no dis.) :‘

a1py + axp (wrong even at LO)




outline of our evaluation

2Pl formalism (self-consistent eq.)

Gy (po, ) = Gro(Po, ) — Xr[G]

1 Po
GR(P) ~ F (1;) : “Full” dissipative propagator

It is difficult to determine the shape function F(po/pz)

1
—tI'"'po + p*7

Weuse GRg(p) ~

and evaluate the exponent z.



outline of evaluation

Po=0) — 7
Ggr'(0,p) = Gg,(0,p) — Zr(0,p)

|:> evaluate self-consistentl Alford, Berges, Cheyne,
Y PRD 70, 125002 (2004)
4n(1 — 2n) cos(mn)

LT NG n)E = ns(mn2)

(P=0) — &
G (po,0) = GRO(p07O)_ZR(p07O)
|:> evaluate at leading-log-order (LLO)
Gzl (po,0) ~ —il''py (1 — klnpg) ~ —il " 'pg™* ~ —iI ! (2 n)/=




Result (preliminary)

the result of our calculation

2 — Mopr
1—k

RLLO =

_ 4n(1 —2n) cos(mn)
N(3 —n)(2 — n)sin®(mn/2)

R : (B~ (n2p1) — A~ (n2p1)]

YT omeN
_ 1 T(E-n) TEY
J A(nepr) = 873/2 [I‘ (1—777)]2 I'(1+4n)

5 )_/ dk B2 4 e — kjm?
PPV ] @r® 11 R + e — kP2

1

S



z (preliminary)

Hohenberg, Halperin and Ma,

2 o PRL 29, 1548 (1972)
2251 LLO M. Suzuki, PTP 53, 97 (1975)
220 - effective theory (model A)I
2.15 2 + 4
15 - Reff. =
© 3m2N

2.10

I our result I

205

2 — 1ap1

| |
0 IV RLLO =
1 —K

zrLo agreeds with z.g in N — oo.

N <1 out of validity region of 1/N expansion

spatial dimensions d=3



summary

I dissipative modes

= dominate critical dynamics

- identify dissipative modes microscopically
by 2P1-1/N expansion at NLO

The exponent z

0 5 5n0 o z
- characterize time scales of critical dynamics 7 ~ &
* microscopic calculation using resummation framework

static part : self-consistent calculation

dynamic part : leading-log-order calculation

future prospects

- evaluate z self-consistently

“find correspondence between 2Pl formalism and
effective theories of critical dynamics (mode coupling theories)



