Fluctuations and the QCD Phase Structure from Effective Theories

Chihiro Sasaki Frankfurt Institute for Advanced Studies

based on:

- C.S. and K. Redlich, Phys. Rev. D 86, 014007 (2012).
- C.S., I. Mishustin and K. Redlich, arXiv:1308.3635 [hep-ph].
- P. M. Lo, B. Friman, O. Kaczmarek, K. Redlich and C.S., Phys. Rev. D 88, 014506 (2013); arXiv:1307.5958 [hep-lat], to appear in PRD.

• QCD phase diagram? modeling QCD thermodynamics?

- good effective theories \Leftarrow good symmetries; p, N_c, N_f, T, μ_B

-effective theories, toy models \Leftarrow lattice QCD (pure YM, zero μ_B)

Outline

- Yang-Mills thermodynamics
- interplay between color-electric and color-magnetic gluons
- how to characterize (de)confinement in QCD?

I. Modeling Yang-Mills Thermodynamics

Yang-Mills thermodynamics from Lattice QCD

[Borsanyi et al. (12)]

• EoS does not reach SB limit. $I = \mathcal{E} - 3P$ does not vanish.

• $I/T^2T_c^2 \sim constant$ in intermediate temperatures.

cf.
$$I^{\text{pert}} \propto (gT)^4$$

 $\Rightarrow I^{\text{pert}}/T^2 \propto (gT)^2$

hot gluon matter in deconf. phase: still nontrivial!

Residual interaction above T_{dec}

- quasi-particle approach: $m_g(T) \sim g_{\text{eff}}(T)T$ [Peshier et al., (96), Levai-Heinz (97)] interaction measure (if $m_g/T \ll 1$): constant m_g ? what is g_{eff} ? $I \sim I_0 + Cm_a^2 T^2 + \cdots \Rightarrow I/T^2 \sim Cm_a^2$.
- how to model these aspects? \Rightarrow effective theory approach \cdots Z(3) center symmetry and Polyakov loops Φ
- Polyakov loop model [Pisarski (00)] made based on Z(3) symmetry:

$$\mathcal{U} = a(T)\bar{\Phi}\Phi + b(T)\left(\bar{\Phi}^3 + \Phi^3\right) + c(T)\left(\bar{\Phi}\Phi\right)^2 + \cdots$$

- -T-dep. coefficients unconstrained by Z(3) \Rightarrow putting T-dep. by hand & fitting Lattice EoS **not unique!**
- drawback: insufficient \mathcal{U} for fluctuations [CS et al. (06), Lo et al. (13)]
- $\begin{array}{l} \mbox{ where T-dep. comes from? \cdots thermal gluon excitations \sim \mathcal{L}_{YM} \\ \Rightarrow \mbox{ closer contact with the underlying theory} \end{array}$

Deriving partition function from YM Lagrangian

• background field method, a constant uniform background \bar{A}_0

$$A_{\mu} = \bar{A}_{\mu} + g \dot{A}_{\mu}$$
$$\bar{A}_{\mu}^{a} = \bar{A}_{0}^{a} \delta_{\mu 0}, \quad \bar{A}_{0} = \bar{A}_{0}^{3} T^{3} + \bar{A}_{0}^{8} T^{8}$$

$$\sum_{n} \ln \det \left(D^{-1} \right) = \ln \det \left(1 - \hat{L}_A e^{-|\vec{p}|/T} \right)$$

[Gross-Pisarski-Yaffe (81)]

- Polyakov loop matrix in adjoint representation (8x8 matrix) $\hat{L}_A = \text{diag}\left(1, 1, e^{i(\phi_1 - \phi_2)}, e^{-i(\phi_1 - \phi_2)}, e^{i(2\phi_1 + \phi_2)}, e^{-i(2\phi_1 + \phi_2)}, e^{i(\phi_1 + 2\phi_2)}, e^{-i(\phi_1 + 2\phi_2)}\right)$ rank of SU(3) group = 2 \Rightarrow elements expressed in 2 variables
- express in terms of

$$\Phi = \operatorname{tr} \hat{L}_F / 3, \ \bar{\Phi} = \operatorname{tr} \hat{L}_F^{\dagger} / 3, \ \hat{L}_F = \operatorname{diag} \left(e^{i\phi_1}, e^{i\phi_1}, e^{-i(\phi_1 + \phi_2)} \right)$$

• full thermodynamic potential:

$$\Omega = \underbrace{\Omega g}_{\sim a(T)\bar{\Phi}\Phi?} + \underbrace{\Omega_{\text{Haar}}}_{\text{responsible for Z(3) breaking}}$$

• full thermodynamics potential: $\Omega = \Omega_g + \Omega_{\text{Haar}}$ [CS-Redlich (2012)]

$$\Omega_{g} = 2T \int \frac{d^{3}p}{(2\pi)^{3}} \ln \left(1 + \sum_{n=1}^{8} C_{n}(\Phi, \bar{\Phi}) e^{-n|\vec{p}|/T} \right),$$

$$\Omega_{\text{Haar}} = -a_{0}T \ln \left[1 - 6\bar{\Phi}\Phi + 4 \left(\Phi^{3} + \bar{\Phi}^{3} \right) - 3 \left(\bar{\Phi}\Phi \right)^{2} \right],$$

$$C_{1} = C_{7} = 1 - 9\bar{\Phi}\Phi, \quad C_{2} = C_{6} = 1 - 27\bar{\Phi}\Phi + 27\left(\bar{\Phi}^{3} + \Phi^{3}\right),$$

$$C_{3} = C_{5} = -2 + 27\bar{\Phi}\Phi - 81\left(\bar{\Phi}\Phi\right)^{2},$$

$$C_{4} = 2\left[-1 + 9\bar{\Phi}\Phi - 27\left(\bar{\Phi}^{3} + \Phi^{3}\right) + 81\left(\bar{\Phi}\Phi\right)^{2}\right], \quad C_{8} = 1$$

- \Rightarrow energy distributions solely determined by group characters of SU(3)
- no free parameter in Ω_g
- one parameter in Ω_{Haar} : $a_0 \Leftrightarrow T_c^{\text{lat}} = 270 \text{ MeV}$

all the phenomenological potentials deduced from $\Omega_g!$ $\Omega \to \alpha(T)\bar{\Phi}\Phi + \Omega_{\text{Haar}}, \quad \Omega \to \text{polynomials}$

Character expansion of Ω_g

• effective gluon mass: $M_g(T) \sim g(T)T$ nonperturbative!

$$M_g/T \gg 1 \quad \Leftrightarrow \quad g(T) \gg 1$$
$$\Omega_g \sim \frac{T^2 M_g^2}{\pi^2} \sum_{n=1}^8 \frac{C_n}{n} K_2 \left(n M_g/T \right) \,.$$

- effective action in the strong coupling exp. [Wozar-Kaestner-Wipf-Heinzl-Pozsgay (06)] $\Omega_{\text{eff}}^{(\text{SC})} = \lambda_{10}S_{10} + \lambda_{20}S_{20} + \lambda_{11}S_{11} + \lambda_{21}S_{21}$ $\Omega_g \text{ vs. } \Omega^{(\text{SC})}: \text{ one-to-one correspondence!}$ $C_{1.7} = S_{10}, \quad C_{2.6} = S_{21}, \quad C_{3.5} = S_{11}, \quad C_4 = S_{20}$
- T-dep. coefficients λ_{pq}
 - SC: derived from the underlying action
 - -extracted from $\Omega_g \Rightarrow 1$ st-order phase transition with $\langle \Phi \rangle$

Truncation? $\frac{\Omega}{T^4} = -a(T)\bar{\Phi}\Phi + b(T)\ln M_{\text{Haar}}\left(\bar{\Phi},\Phi\right) + c(T)\left(\bar{\Phi}^3 + \Phi^3\right) + d(T)\left(\bar{\Phi}\Phi\right)^2.$

[Lo-Friman-Kaczmarek-Redlich-CS (2013)]

Thermodynamics

• any finite temperature in confined phase: $\Phi=0$ thus $\Omega_{Haar}\sim 0$

$$\Omega_g(\Phi = \bar{\Phi} = 0) \sim 2T \int \frac{d^3p}{(2\pi)^3} \ln\left(1 + e^{-|\vec{p}|/T}\right)$$

wrong sign! \Rightarrow unphysical EoS $p, s, \epsilon < 0$

Gluons are NOT correct dynamical variables below T_c !

- ★ "conventional" potential $\Omega_{polynomial} \Rightarrow$ gluon confinement NOT seen ★ correct physics from the terms obtained in character expansion.
- \bullet cf. PNJL/PQM: quarks are suppressed but exist at any T.

[Meisinger-Ogilvie (96), Fukushima (03), Ratti et al. (06)]

$$\mathcal{L} = \bar{q} \left(i \partial - A \right) q + G \left(\bar{q} q \right)^2 - \mathcal{U}(\bar{\Phi}, \Phi), \quad A_\mu = \delta_{\mu 0} A^0$$
$$\Omega_q = -d_q T \int \frac{d^3 p}{(2\pi)^3} \ln \left[1 + 3\Phi e^{-E_+/T} + 3\bar{\Phi} e^{-2E_+/T} + e^{-3E_+/T} \right]$$

 $\langle \Phi \rangle \simeq 0$ at low T: 1- and 2-quark states *thermodynamically* irrelevant \Rightarrow *mimicking confinement*

II. Chromoelectric and Chromomagnetic Dynamics

Gluon condensate from LQCD

[D'Elia-Di Giacomo-Meggiolaro (02)]

Chromoelectric vs. chromomagnetic gluons

• $\langle \Phi \rangle \rightarrow 1$ limit: $P \rightarrow P_{ideal}, I \rightarrow 0 \cdots$ QCD trace anomaly? \Rightarrow scale symmetry breaking and a dilaton [Schechter (80)]

$$V_{\chi} = \frac{B}{4} \left(\frac{\chi}{\chi_0}\right)^4 \left[\ln\left(\frac{\chi}{\chi_0}\right)^4 - 1\right]$$

- *electric sector* $(G_{0i}^2 \sim E^2)$ changes qualitatively with T: deconfinement phase transition driven by electric gluons
- magnetic sector $(G_{ij}^2 \sim B^2)$ unaffected: string tension non-vanishing at any T [Borgs (85), Manousakis-Polonyi (87)]

dilatons can survive above $T_c!$

 $\Phi \Leftrightarrow A_0$: electric $\chi \Leftrightarrow G_{\mu\nu}G^{\mu\nu}$: electric plus magnetic

cf. $\langle E^2 \rangle_T, \langle B^2 \rangle_T$ from D'Elia-Di Giacomo-Meggiolaro (02)

non-vanishing $\langle \chi \rangle \Leftrightarrow$ broken scale symmetry \Leftrightarrow magnetic confinement

An effective theory

[CS-Mishustin-Redlich (13)]

• effective potential

$$\Omega(\Phi, \chi; T) = \Omega_g(\Phi; T) + \Omega_{\text{Haar}}(\Phi; T) + V_{\chi}(\chi) + V_{\text{mix}}(\Phi, \chi),$$

$$V_{\text{mix}}(\Phi, \chi) = G_{\phi\chi} \left(\frac{\chi}{\chi_0}\right)^4 \bar{\Phi} \Phi : \text{ invariant under Z(3) and scale sym.}$$

• two condensates: $\chi/\chi_0 = \exp\left[-G_{\phi\chi}\bar{\Phi}\Phi/B\right]$

• $\langle \chi \rangle$ at higher temperature? \cdots magnetic scale $g^2(T)T!$

- residual interaction at high temperature: *magnetic confinement*
 - matching to 3d YM theory (high T effective theory)

$$\begin{split} \mathcal{D} &\sim \langle B^2 \rangle e^{-|\vec{x}|/\xi} \,, \quad \sigma_s \sim \langle B^2 \rangle \xi^2 \quad \Leftrightarrow \quad \text{3-dim YM:} \sqrt{\sigma_s} = c_s g^2(T) T \\ &\langle B^2 \rangle = c_B \left(g^2(T) T \right)^4 \quad c_B = \frac{6}{\pi} c_s^2 c_m^2 \,, \quad m_{\text{mag}} = c_m g^2(T) T \,. \end{split}$$

$$\begin{aligned} \text{[Agasian (03)]} \end{split}$$

- identify $\langle B^2 \rangle$ with $\langle \chi \rangle^4$ at "high" $T \colon V(\chi) \to V(g^2(T)T)$

$$\begin{split} \Omega &= \underbrace{\Omega_g}_{\sim T^4} + \underbrace{\Omega_{\text{Haar}}}_{\sim T} + \underbrace{V_{\chi + \text{mix}}}_{\sim \text{const} \Rightarrow \sim (g^2 T)^4} \\ I &= \mathcal{E} - 3P \\ &= \underbrace{3\Omega_g - 2\int \frac{d^3p}{(2\pi)^3} \frac{p\sum_n nC_n e^{-np/T}}{1 + \sum_n C_n e^{-np/T}}}_{\sim T^4 \Rightarrow 0 \times T^4} + \underbrace{3\Omega_{\text{Haar}}}_{\sim T} + \underbrace{4\left(V_{\chi} + V_{\text{mix}}\right)}_{\sim \text{const} \Rightarrow \sim (g^2 T)^4} \end{split}$$

• interaction measure: this model (L) & lattice [Borsanyi et al. (12)] (R)

• interaction measure: this model (L) & lattice [Borsanyi et al. (12)] (R)

 $I_1(T < T_0) : V_{\chi + \text{mix}} \sim \text{const} \implies I_2(T_0 < T) : V_{\chi + \text{mix}} \sim \#T^4$

- decreasing I_1/T^2 + increasing $I_2/T^2 \Rightarrow I/T^2 \sim \text{constant}$ - tendency of I^{lat}/T^2 is reproduced. *alternative to HTL!*

How to introduce quarks?

• non-pert. part \sim **non-local** (T, Φ) effective 4-fermi interaction

gluon

ref1. Kondo (2010): SU(2) formulation using Faddeev-Niemi decomposition and FRG \Rightarrow SU(3)???

ref2. Haas et al. (2013):

quark back-reaction to the gluon potential in PQM plus FRG

 \bullet NP/microscopic derivation w/ RG needs to be done in future.

III. Fluctuations of Φ and n_B

characterizing deconfinement of quarks and gluons in QCD?

 \Rightarrow Polyakov loop ...?

 \Rightarrow fluctuations!

... but not all of them usefull. \Rightarrow What needs to be looked at?

Probing deconfinement with Polyakov loop susceptibilities (YM)

[Lo-Friman-Kaczmarek-Redlich-CS (2013)]

ratio $R_A = \chi_A/\chi_R$

• deconf. phase: $R_A \simeq 1$ from spontaneous Z(3) breaking with $\langle L_I \rangle = 0$

• conf. phase: $R_A \simeq 0.43$ from unbroken $Z(3) \Leftarrow R_A^{\text{Gaussian}} = 2 - \frac{\pi}{2}$

Probing deconfinement with Polyakov loop susceptibilities (QCD)

[Lo-Friman-Kaczmarek-Redlich-CS (2013)]

- dynamical quarks smoothen susceptibilities.
- \bullet a clear remnant of Z(3) in R_A
- R_A characterizing gluon deconfinement: $T_{ch} \simeq T_{g-deconf}!$

How to characterize deconfinement? [Friman-Kaczmarek-Karsch-Lo-Redlich-CS]

• quark number susceptibilities: kurtosis measures fermion number B^2

• ratios χ_B^4/χ_B^2 and $R_A = \chi_A/\chi_R \Rightarrow$ quark and gluon conf.

•
$$T_{\rm ch} \simeq T_{\rm q-deconf} \simeq T_{\rm g-deconf}$$
 at $\mu = 0!$

Summary

- derivation of gluon partition function from YM Lagrangian
 - Polyakov loops naturally appear representing group character.
 - gluons are forbidden below T_c dynamically.
- interplay between chromoelectric and chromomagnetic gluon dynamics
 - $-\operatorname{identify}\,\left\langle B^{2}\right\rangle$ with $\left\langle \chi^{4}\right\rangle$
 - matching to 3-dim theory: magnetic scale $g^2(T)T$ comes in.
 - consistent with I/T^2 in LQCD

strong gauge dynamics: fluctuations and correlations for better discrimination