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QCD phase diagram

QCD partition function

Z =

∫

DUDψ̄Dψ e−SYM−SF =

∫

DU detD e−SYM

at nonzero quark chemical potential

[detD(µ)]∗ = detD(−µ∗)

fermion determinant is complex

straightforward importance sampling not possible

sign problem

⇒ phase diagram has not yet been determined
non-perturbatively
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Outline

complex Langevin dynamics: exploring a complexified
field space

distributions in simple models

connection with Lefschetz thimbles

gauge theories: from SU(N ) to SL(N,C)

summary and outlook
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Complex integrals

consider simple integral

Z(a, b) =

∫ ∞

−∞

dx e−S(x) S(x) = ax2 + ibx

complete the square/saddle point approximation:

into complex plane

lesson: don’t be real(istic), be more imaginative

radically different approach:

complexify all degrees of freedom x→ z = x+ iy

enlarged complexified space

new directions to explore
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Complexified field space

complex weight ρ(x)

dominant configurations in the path integral?

x

R
e 

ρ(
x)

⇒

y

x

real and positive distribution P (x, y): how to obtain it?

⇒ solution of stochastic process

complex Langevin dynamics
Parisi 83, Klauder 83
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Complex Langevin dynamics

does it work?

for real actions: stochastic quantization Parisi & Wu 81

equivalent to path integral quantization

Damgaard & Hüffel, Phys Rep 87

for complex actions: no formal proof

troubled past: “disasters of various degrees”

Ambjørn et al 86

nevertheless, recent examples in which CL

can handle severe sign and Silver Blaze problems

gives the correct result

analytical understanding under control

first results for gauge theories and QCD
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Complex Langevin dynamics

various scattered results since mid 1980s

here:

finite density results obtained with Nucu Stamatescu,
Erhard Seiler, Frank James, Denes Sexty, Lorenzo
Bongiovanni, Jan Pawlowski, Pietro Giudice, Kim Splittorff
0807.1597 [GA, IOS]

0810.2089, 0902.4686 [GA]

0912.3360 [GA, ES, IOS]

0912.0617, 1101.3270 [GA, FJ, ES, IOS]

1005.3468, 1112.4655 [GA, FJ]

1006.0332 [GA, KS]

1211.3709 [ES, DS, IOS]

1212.5231 [GA, FJ, JP, ES, DS, IOS]

1306.3075 [GA, PG, ES]

1307.7748 [DS] 1308.4811 [GA]

1311.1056 [GA, LB, IOS, ES, DS]

reviews: 1302.3028 [GA], 1303.6425 [GA, LB, IOS, ES, DS]
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Real Langevin dynamics

partition function Z =
∫

dx e−S(x) S(x) ∈ R

Langevin equation

ẋ = −∂xS(x) + η, 〈η(t)η(t′)〉 = 2δ(t− t′)

associated distribution ρ(x, t)

〈O(x(t)〉η =

∫

dx ρ(x, t)O(x)

Langevin eq for x(t) ⇔ Fokker-Planck eq for ρ(x, t)

ρ̇(x, t) = ∂x
(

∂x + S′(x)
)

ρ(x, t)

stationary solution: ρ(x) ∼ e−S(x)
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Fokker-Planck equation

stationary solution typically reached exponentially fast

ρ̇(x, t) = ∂x
(

∂x + S′(x)
)

ρ(x, t)

write ρ(x, t) = ψ(x, t)e−
1

2
S(x)

ψ̇(x, t) = −HFPψ(x, t)

Fokker-Planck hamiltonian:

HFP = Q†Q =

[

−∂x +
1

2
S′(x)

] [

∂x +
1

2
S′(x)

]

≥ 0

Qψ(x) = 0 ⇔ ψ(x) ∼ e−
1

2
S(x)

ψ(x, t) = c0e
− 1

2
S(x) +

∑

λ>0

cλe
−λt → c0e

− 1

2
S(x)
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Complex Langevin dynamics

partition function Z =
∫

dx e−S(x) S(x) ∈ C

complex Langevin equation: complexify x→ z = x+ iy

ẋ = −Re ∂zS(z) + η 〈η(t)η(t′)〉 = 2δ(t− t′)

ẏ = −Im ∂zS(z) S(z) = S(x+ iy)

associated distribution P (x, y; t)

〈O(x+ iy)(t)〉 =

∫

dxdy P (x, y; t)O(x+ iy)

Langevin eq for x(t), y(t) ⇔ FP eq for P (x, y; t)

Ṗ (x, y; t) = [∂x (∂x +Re ∂zS) + ∂yIm ∂zS]P (x, y; t)

generic solutions? semi-positive FP hamiltonian?
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Field theory

scalar field:

(discretized) Langevin dynamics in “fifth” time direction

φx(n+ 1) = φx(n) + ǫKx(n) +
√
ǫηx(n)

drift: Kx = −δS[φ]/δφx
Gaussian noise: 〈ηx(n)〉 = 0 〈ηx(n)ηx′(n′)〉 = 2δxx′δnn′
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Field theory

scalar field:

(discretized) Langevin dynamics in “fifth” time direction

φx(n+ 1) = φx(n) + ǫKx(n) +
√
ǫηx(n)

drift: Kx = −δS[φ]/δφx
Gaussian noise: 〈ηx(n)〉 = 0 〈ηx(n)ηx′(n′)〉 = 2δxx′δnn′

gauge/matrix theories:

U(n+ 1) = R(n)U(n) R = exp
[

iλa
(

ǫKa +
√
ǫηa

)]

Gell-mann matrices λa (a = 1, . . .N2 − 1)

drift: Ka = −Da(SB + SF ) SF = − ln detM

complex action: K† 6= K ⇔ U ∈ SL(N,C)
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Results

even without rigorous mathematical proof
many promising results at nonzero µ:

1d QCD

3d SU(3) spin models

4d Bose gas (severe sign and Silver Blaze problem)

heavy dense QCD

however, also notable failures

3d XY model at nonzero µ

also problems for

Minkowski integrals, eiS

Berges, Borsanyi, Stamatescu, Sexty 05 - 08
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Distributions

emerging insight: crucial role played by distribution P (x, y)

does it exist?
usually yes, constructed by brute force by solving the CL process
direct solution of FP equation extremely hard
GA, ES & IOS 09, Duncan & Niedermaier 12, GA, PG & ES 13

what are its properties?
localization in x− y space, fast/slow decay at large |y|
essential for mathematical justification of approach
GA, ES, IOS (& FJ) 09, 11

smooth connection with original distribution when
µ ∼ 0?
GA, FJ, JP, ES, DS & IOS 12

study with histograms, scatter plots, flow
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Distributions

distribution in well-behaved example GA & IOS 08
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One-dimensional QCD

exactly solvable Gibbs 86, Bilic & Demeterfi 88

phase quenched: transition at µ = µc, full: no transition

severe sign problem when |µ| > |µc|

chiral condensate:
write as integral over spectral density

Σ =

∫

d2z
ρ(z;µ)

z +m
µc = arcsinhm

ρ(z;µ) complex and oscillatory Ravagli & Verbaarschot 07

condensate independent of µ: Silver Blaze

solve with complex Langevin GA & Splittorff 10
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One-dimensional QCD

exact results reproduced

discontinuity at µc = 0 in thermodynamic limit n→ ∞

-2 -1 0 1 2

µ
c
 = arcsinh m

-1

-0.5

0

0.5

1
Σ

n=4
n=10

µ=1

sign problem severe when |µc| < |µ|
condensate independent of µ: Silver Blaze
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One-dimensional QCD

elegant analytical solution:

original distribution:

ρ(x) ∼ en(µ−µc)einx

when n→ ∞

real distribution
sampled by
complex
Langevin:

exp(n)

c

µ−µc

µ

(x)ρ
1/n

µ+µ

1

y

x

P(x,y)

P (x, y) =

{

1 µ− µc < y < µ+ µc

0 elsewhere
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Quartic model

Z =

∫ ∞

−∞

dx e−S S(x) =
σ

2
x2 +

λ

4
x4

often used toy model: complex mass parameter σ = A+ iB

GA, PG & ES 13

essentially analytical proof:

CL gives correct result for all observables 〈xn〉 when
A > 0 and A2 > B2/3

based on properties of the distribution P (x, y)

P (x, y) = 0 outside strip: |y| > y−

y− =
1

2λ

(

A−
√

A2 − B2/3
)

follows from FPE
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Quartic model

Z =

∫ ∞

−∞

dx e−S S(x) =
σ

2
x2 +

λ

4
x4 σ = A+ iB

numerical solution of FPE for P (x, y)
∼ 150

2 × 150
2 matrix problem

distribution is localised in a strip around real axis

GA, PG & ES 13
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Quartic model

interesting connection to Lefschetz thimbles Witten 10

Cristoforetti, Di Renzo, Mukherjee & Scorzato 12, 13

Fujii, Honda, Kato, Kikukawa, Komatsu & Sano 13

generalisation of steepest descent

integrate along path in complex plane where
ImS(z) = cst, the thimble J
residual sign problem due to curvature of thimble

Z = e−iImSJ

∫

J

dz e−ReS(z)

= e−iImSJ

∫

ds J(s)e−ReS(z(s))

with complex Jacobian J(s) = z′(s) = x′(s) + iy′(s)

Kyoto, November 2013 – p. 17



Quartic model

thimbles can be computed analytically

pass through stationary points ∂zS = 0 & ImS(z) = cst

-2 -1 0 1 2
x

-2

-1

0

1

2

y

stable thimble
unstable thimble
not contributing

σ = 1+i, λ = 1

3 stationary points: only 1 thimble (for A > 0)

integrating along thimble gives correct result, with
inclusion of complex Jacobian

Kyoto, November 2013 – p. 17



Quartic model

compare thimble and FP distribution P (x, y)
GA 13

-1 -0.5 0 0.5 1
x

-0.3

-0.15

0

0.15

0.3

y
> 0.98 local saddle point of P(x,y) 
thimble

σ = 1+i, λ = 1

thimble and P (x, y) follow each other

however, weight distribution quite different

intriguing result: CLE finds the thimble – is this generic?
Kyoto, November 2013 – p. 17



Gauge theories

SU(N ) gauge theory: complexification to SL(N,C)

links U ∈ SU(N ): CL update

U(n+1) = R(n)U(n) R = exp
[

iλa
(

ǫKa +
√
ǫηa

)]

Gell-mann matrices λa (a = 1, . . . N2 − 1)

drift: Ka = −Da(SB + SF ) SF = − ln detM
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Gauge theories

SU(N ) gauge theory: complexification to SL(N,C)

links U ∈ SU(N ): CL update

U(n+1) = R(n)U(n) R = exp
[

iλa
(

ǫKa +
√
ǫηa

)]

Gell-mann matrices λa (a = 1, . . . N2 − 1)

drift: Ka = −Da(SB + SF ) SF = − ln detM

complex action: K† 6= K ⇔ U ∈ SL(N,C)

deviation from SU(N ): unitarity norms

1

N
Tr

(

UU † − 11
)

≥ 0
1

N
Tr

(

UU † − 11
)2 ≥ 0
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Gauge theories

deviation from SU(3): unitarity norm GA & IOS 08

1

3
TrUU † ≥ 1

heavy dense QCD, 44 lattice with β = 5.6, κ = 0.12, Nf = 3
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Gauge theories

controlled evolution: stay close to SU(N ) submanifold when

small chemical potential µ

small non-unitary initial conditions

in presence of roundoff errors

Kyoto, November 2013 – p. 20



Gauge theories

controlled evolution: stay close to SU(N ) submanifold when

small chemical potential µ

small non-unitary initial conditions

in presence of roundoff errors

in practice this is not the case

⇒ unitary submanifold is unstable!

process will not stay close to SU(N )

wrong results in practice, e.g. jumps when µ2 crosses 0

also seen in abelian XY model
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Unstable gauge theories

what is the origin? can this be fixed?

gauge freedom: link at site k

Uk → ΩkUkΩ
−1
k+1 Ωk = eiω

k

aλa

in SU(N ): ωk
a ∈ R ⇒ in SL(N,C): ωk

a ∈ C

choose ωk
a purely imaginary, orthogonal to SU(N )

direction

control unitarity norm
1

N
Tr

(

UU † − 11
)

≥ 0

gauge cooling
ES, DS & IOS 12

GA, LB, ES, DS & IOS 13
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Gauge cooling

cooling update at site k Ωk = e−αfk

aλa α > 0

Uk → ΩkUk Uk−1 → Uk−1Ω
−1
k

unitarity norm: distance D =
∑

k

1

N
Tr

(

UkU
†
k − 11

)

after one update, D → D′
lineariseD′ − D = − α

N
(fka )

2 +O(α2) ≤ 0

reduce distance from SU(N ) SU(   )

NSL(   ,C)

N
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Gauge cooling

what is fka? Ωk = e−αfk

aλa D′ − D = −α/N(fka )
2 + . . .

choose fka as the gradient of the unitarity norm

fka = 2Trλa

(

UkU
†
k − U †

k−1Uk−1

)

if U ∈ SU(N ): fka = 0, D = 0, no effect

cooling brings the links as
close as possible to SU(N )

SU(   )

NSL(   ,C)

N
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Gauge cooling

simple example: one-link model

S =
1

N
TrU U → ΩUΩ−1

D =
1

N
Tr

(

UU † − 11
)

fa = 2Trλa
(

UU † − U †U
)

note: c = TrU/N, c∗ = TrU †/N invariant under cooling

cooling dynamics:

D′ − D ≡ ˙D = − α

N
f2a = −16α

N
TrUU †[U,U †]

in SU(2)/SL(2,C):

˙D = −8α
(D2 + 2

(

1− |c|2
)D+ c2 + c∗2 − 2|c|2

)
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Gauge cooling

SU(2)/SL(2,C) one-link model

˙D = −8α
(D2 + 2

(

1− |c|2
)D+ c2 + c∗2 − 2|c|2

)

c = 1
2TrU, c∗ = 1

2TrU
† invariant under cooling

if c = c∗: U gauge equivalent to SU(2) matrix

˙D = 8α(D+ 2− 2c2)D D(t) ∼ e−16α(1−c2)t → 0

if c 6= c∗: U not gauge equivalent to SU(2) matrixD(t) → D0 = |c|2 − 1 +
√

1− c2 − c∗2 + |c|4 > 0

minimal distance from SU(2)
reached exponentially fast
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Langevin with gauge cooling

complex Langevin dynamics with gauge cooling:

alternate CL updates with gauge cooling updates

monitor unitarity norm

stay fairly close to SU(N )

models

Polyakov chain (exactly solvable)

S = β1TrU1 . . . UNℓ
+ β2TrU

−1
Nℓ

. . . U−1
1 β1,2 ∈ C

heavy dense QCD ES, DS & IOS 12

full QCD Denes Sexty 1307.7748

SU(3) with a θ-term GA, LB, ES, DS, IOS 1311.1056
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Langevin with gauge cooling

SU(2) Polyakov loop model GA, LB, ES, DS & IOS 13

0 250 500 750 1000
Langevin time

1e-06

0.0001

0.01

1

T
r(

U
U

✝
)/

2 
- 

1

no cooling
α = 0.001 (10 gc steps)
α adaptive (10 gc steps)

SU(2) Polyakov chain, N
links

= 30, β = (1+i sqrt(3))/2

evolution of unitarity norm
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Langevin with gauge cooling

SU(2) Polyakov loop model
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histograms of observables

without cooling: broad distributions, no rapid decay

with some cooling: reduced

with sufficient adaptive cooling: narrow distributions
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Langevin with gauge cooling

SU(2) Polyakov loop model
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gauge cooling steps
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observables depend on gauge cooling

exact results are reproduced when distributions are
narrow and unitarity norm close to 0
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Langevin with gauge cooling

in QCD:

unitary submanifold very unstable

gauge cooling essential

first results promising Denes Sexty 1307.7748

many things to sort out

cooling not effective at small β . 5.7

larger lattices required

fermion matrix inversion

stepsize dependence

. . .

here: SU(3) with a θ term GA, LB, ES, DS, IOS 1311.1056
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SU(3) with aθ term

pure SU(3) Yang-Mills theory (no fermions)

S = SYM − iθQ Q =
g2

64π2

∫

d4xF a
µνF̃

a
µν

on the lattice:

S = SW − iθL
∑

x

qL(x) qL(x) = discretised lattice version

θL bare parameter, requires renormalisation

lattice QL =
∑

x qL is not topological (top. cooling)

complex action for real θL, real action for imaginary θL

imaginary θL: real Langevin and hybrid Monte Carlo (HMC)

real θL: use complex Langevin
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SU(3) with aθ term

very preliminary results: 64 lattice, θ2L = 0,±1,±4

test of analyticity in θ2L: 〈plaquette〉

-4 -2 0 2 4

θ
L

2

0.58

0.585

0.59

0.595

0.6

0.605

0.61
<

pl
aq

ue
tte

>

Langevin
HMC

6
4

β=6.1

β=6.0

β=5.9

no θL dependence: smooth analytic behaviour
(as expected)
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SU(3) with aθ term

very preliminary results: 64 lattice, θ2L = 0,±1,±4

-10 -5 0 5 10
ReS

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

10

hi
st

og
ra

m

ReS, β=6.1
ReS, β=6.0
ReS, β=5.9

6
4
, θ

L
=2

-10 -5 0 5 10
ImS

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

10

hi
st

og
ra

m

ImS, β=6.1
ImS, β=6.0
ImS, β=5.9

6
4
, θ

L
=2

Re S Im S

histograms: better localisation at larger β values
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SU(3) with aθ term

topological charge:

θL real/imaginary: 〈QL〉 imaginary/real

small θL: linear dependence 〈qL〉 = iθLχL +O(θ3L)

χL lattice topological susceptibility
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running average: preliminary result agrees with expectation
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Summary and outlook

complex Langevin dynamics can handle

sign problem

Silver Blaze problem

phase transition

thermodynamic limit

in a variety of theories, but correct result not guaranteed

so far

better mathematical and practical understanding

connection with Lefschetz thimbles

gauge cooling for SU(N ) gauge theories

first application to QCD and θ term

lots of work to do!
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