QCD transition at finite temperature with Domain Wall fermions

Heng-Tong Ding (丁亨通)

on behalf of the hotQCD and RBC/LLNL collaboration

Central China Normal University

arXiv:1205.3535, arXiv:1309.4149

New Frontiers in QCD 2013

--- Insight into QCD matter from heavy-ion collisions ---

2013.11.28

sketched QCD phase diagram

Fukushima & Hatsuda '10

QCD phase diagram at $\mu_B=0$

 \star The fundamental scale of QCD: chiral phase transition T_c?

 \star The value of tri-critical point (m^{tri}_s) ?

The location of 2^{nd} order Z(2) line?

scenarios of QCD phase transition at $m_1=0$

QCD phase transition at the physical point

de Forcrand & Philipsen, '075 /31

Karsch et al., '03

QCD transition at finite temperature

Recent lattice QCD studies using Highly Improved Staggered Quarks with temporal extent of Nt=6 suggest coordinates of the physical point: $(\overline{m}_s/27, \overline{m}_s)$ coordinates of $m_{max}^c \approx (\overline{m}_s/270, \overline{m}_s/270)$ 2^{nd} order O(4) chiral phase transition seems to be more relevant to the physics at the physical point

QCD transition at finite temperature

Recent lattice QCD studies using Highly Improved Staggered Quarks with temporal extent of Nt=6 suggest coordinates of the physical point: $(\overline{m}_s/27, \overline{m}_s)$ coordinates of $m_{max}^c \approx (\overline{m}_s/270, \overline{m}_s/270)$

2nd order O(4) chiral phase transition ?

The symmetries of QCD

At the classical level, the symmetries of QCD with N_f flavors of massless fermions:

 $SU(N_f)_L \times SU(N_f)_R \times U(1)_V \times U(1)_A$

Spontaneous SU(N_f)_LxSU(N_f)_R chiral symmetry breaking

gives rise to 8 Goldstone bosons: the π, K, η

9th Goldstone boson η' ?

• $U(I)_A$ symmetry is violated by axial anomaly at the quantum level and is responsible for the η - η ' mass splitting 't Hooft, Adler, Bell & Jackiw, Witten & Veneziano

$$\partial_{\mu} j_5^{\mu} = \frac{g^2 N_f}{16\pi^2} tr(\tilde{F}_{\mu\nu} F^{\mu\nu}), \qquad m_{\eta}^2 + m_{\eta'}^2 - 2m_K^2 = \frac{2N_f}{F_{\pi}^2} \chi_{top}^{N_f=0}$$

$U(\mathsf{I})_\mathsf{A}$ symmetry at finite T and its underlying mechanism

 \mathbf{S} Is U(I)_A symmetry restored at or above $\mathsf{T}_{\chi\mathrm{SB}}$?

Shuryak '94

Possible influence on the particle yield, reduction of η ' mass ?

Shuryak '94, Csorgo, Vertesi and Sziklai, PRL '10

Ite fate of U(I)_A symmetry at finite T and its underlying mechanism are not yet clear

First principle calculations on the lattice

• Recent studies using non-chiral fermions, e.g. staggered fermions, give some evidence of O(N) scaling in the chiral limit of Nf=2+1 QCD

S. Ejiri et al., PRD '09, HTD, lattice '13

• Not yet conclusive due to the infamous taste symmetry breaking in the staggered discretization scheme with remnant $U(I)_A$ symmetry

First principle calculations on the lattice

Difficulties:

• chiral fermions that preserve exact chiral symmetry and produce correct axial anomaly are needed

Ginsparg-Wilson relation: $\{D^{-1}, \chi_5\}=a\chi_5$

• Overlap fermions: the only operator satisfies the Ginsparg-Wilson relation, however, there exists a "freezing" topology problem, more expensive than Domain Wall fermions

Domain Wall fermions: preserve exact chiral symmetry and produce correct axial anomaly when the fifth dimension is sufficiently large. Residual symmetry breaking is quantified by the additive renormalization factor m_{res} to the quark mass

studies on $U(I)_A$ symmetry at finite T using chiral fermions

Nf=2+1 QCD studies using Domain Wall Fermions

simulations of 2+1 flavor QCD using Domain Wall fermions on Nt=8 lattices with two pion masses:

 m_{π} =140 MeV, Ns=32

m_π=200 MeV, Ns=32,24,16

based on arXiv:1205.3535, arXiv:1309.4149

results are shown for m_{π} =200 MeV if not mentioned explicitly

hotQCD and RBC/LLNL collaboration

- A. Bazavov, University of Iowa
- T. Bhattacharya, LANL
- M. Buchoff, INT
- M. Cheng, Boston University
- N. Christ, Columbia University
- C. DeTar, Utah University
- H.-T. Ding, Central China Normal University
- Steven Gottlieb, Indiana University
- R. Gupta, LANL
- P. Hegde, Central China Normal University
- U. M. Heller, APS
- C. Jung, BNL
- F. Karsch, BNL & Bielefeld University
- E. Laermann, Bielefeld University

- L. Levkova, Utah University
- Z. Lin, Columbia University
- R. D. Mahwinnery, Columbia University
- S. Mukherjee, BNL
- P. Petreczky, BNL
- C. Schmidt, Bielefeld University
- C. Schroeder, LLNL
- R.A. Soltz, LLNL
- W. Söldner, University of Regensburg
- R. Sugar, UCSB
- D. Toussaint, University of Arizona
- W. Unger, Frankfurt University
- P. Vranas, LLNL
- H.Yin, Columbia University

signatures of chiral symmetry restoration

· (σ, π^i) and (η, δ^i) each transform as an irreducible 4-dim. rep. of SU(2)_LxSU(2)_R

· (σ, η) and (π^i, δ^i) each transform as 2-dim. rep. of U(1)_A

• Susceptibilities defined as integrated two point correlation functions of the eight local operators, e.g. $\chi_{\pi} = \int d^4x < \pi^i(x)\pi^i(0) > 1$

fate of chiral symmetries at finite T

Some issues

LQCD calculations using Domain Wall fermions

- the finite lattice cutoff effects ?
- the finite volume effects ? contributions from exact zero modes ?
- the residual symmetry breaking effects ?

Signatures of $U(I)_A$ restoration

Can U(I)_A restoration be signaled by two point correlation functions and their susceptibilities ? Aoki, Fukaya and Taniguchi, arXiv:1209.2061

Dirac Eigenvalue spectrum

Symmetry restorations in the chiral limit

explicit chiral symmetry breaking by the finite quark mass?

contributions from exact zero modes

$$\begin{split} \langle \bar{\psi}\psi \rangle &= \int_0^\infty \mathrm{d}\lambda\,\rho(\lambda,\tilde{m})\,\frac{2\tilde{m}}{\tilde{m}^2 + \lambda^2} + \frac{\langle |Q_{\mathrm{top}}|\rangle}{\tilde{m}V} \\ \chi_\pi - \chi_\delta &= \int_0^\infty \mathrm{d}\lambda\,\rho(\lambda,\tilde{m})\,\left(\frac{2\tilde{m}}{\tilde{m}^2 + \lambda^2}\right)^2 + \frac{2\langle |Q_{\mathrm{top}}|\rangle}{\tilde{m}^2V} \end{split}$$

• The second terms are from exact zero mode contributions related to the non-zero topological charge and should vanish when V goes to infinity

The mild volume dependence of chiral condensates and $\chi_{\pi} - \chi_{\delta}$ at $T \gtrsim Tc$ indicates negligible exact zero mode contributions

exact DWF ward Identity

Gell-Mann-Oakes-Renner relation: $\langle \bar{\psi}\psi \rangle = m \chi_{\pi}$

In DWF formalism:

$$\langle \bar{\psi}\psi \rangle_l = (m_l + m_{res})\chi_{\pi_l} + R_{5d}^l$$

$$= m_l\chi_{\pi_l} + \Delta_{mp}^l$$

$$\langle \bar{\psi}\psi \rangle_s = (m_s + m_{res})\chi_{\pi_s} + R_{5d}^s$$

$$= m_s\chi_{\pi_s} + \Delta_{mp}^s$$

• subtracted pbp $\Delta_{I,s}$ to cancel the linear UV divergence in quark mass

$$\Delta_{l,s} = \langle \bar{\psi}\psi \rangle_l - \frac{m_l + m_{res}}{m_s + m_{res}} \langle \bar{\psi}\psi \rangle_s \quad \Delta_{l,s} = \Delta_{l,s}^{\rm imp} + R_{5d}^l - \frac{m_l + m_{res}}{m_s + m_{res}} R_{5d}^s$$

• $rac{1}{2}$ improved subtracted pbp $\Delta_{l,s}^{imp}$: suitable to DWF, cancel further residual chiral symmetry breaking effects

$$\Delta_{l,s}^{\rm imp} = (m_l + m_{res})(\chi_{\pi_l} - \chi_{\pi_s})$$

reproduction of improved subtracted pbp from $\rho(\lambda)$

Subtracted chiral condensates can be reproduced well from Dirac Eigenvalue spectrum

evaluation of χ_{π} - χ_{δ} from 2-pt. corr. and Dirac Eigenvalues

Remarkable agreement between χ_{π} - χ_{δ} evaluated from 2-point correlation functions and Dirac Eigenvalues

At two lowest T the discrepancy may come from the unphysical fluctuation of Λ associated with the residual symmetry breaking

signatures from Dirac eigenvalue spectrum $\rho(\lambda)$

$$\langle \bar{\psi}\psi\rangle = \int_0^\infty \mathrm{d}\lambda\,\rho(\lambda,\tilde{m})\,\frac{2\tilde{m}}{\tilde{m}^2 + \lambda^2} \,, \qquad \chi_\pi - \chi_\delta = \int_0^\infty \mathrm{d}\lambda\,\rho(\lambda,\tilde{m})\,\left(\frac{2\tilde{m}}{\tilde{m}^2 + \lambda^2}\right)^2$$

• The restoration of $SU(2)_L x SU(2)_R$ symmetry

Banks-Casher formula: $\langle \overline{\Psi}\Psi \rangle = \pi \rho(0)$

• ρ(0)=0

• the restoration of $U(I)_A$ symmetry

- $\rho(\lambda)$ must go to zero faster than linearly
- a sizable gap from zero, i.e. $\rho(\lambda < \lambda_c) = 0$ Cohen, nucl-th/980106
- $\rho(\lambda)$ = c $|\lambda|^{\alpha}$, α >2 if observables are analytic in m^2

Aoki, Fukaya and Taniguchi, arXiv:1209.2061

Dirac Eigenvalue spectrum with m_{π} =200 MeV

red histograms: 32^3 results $T < T_c$ nonzero $\rho(0)$ $T \sim T_c$ vanishing $\rho(0)$

black lines: 16³ results

T>T_c no gap from zero

U(I)_A remains broken up to 195 MeV

possible behaviors for $\rho(\lambda,m)$

Possible forms of $\rho(\lambda,m)$ making $\langle \bar{\Psi}\Psi \rangle = 0$ and $\chi_{\pi} - \chi_{\delta} \neq 0$?

ρ(λ,m) =		= c ₀ + c ₁ λ	+	c ₂ r	$n^2 \delta(\lambda)$	+ c ₃ m ·	+ c ₄ m	$n^2 + O(\lambda,m)$
		low T chiral pertur. theory Smilga & Stern, PLB '93		high T Dilute Instanton Gas Approx. Gross, Yaffe & Pisarski, Rev. Mod. Phys. '81				
	Ansatz	$\langle ar{\psi}\psi angle$	χ	π	χ_δ	$\chi_{\pi}-\chi_{\delta}$	$2\chi_{ m disc}$	
	С	сπ	cπ	m	0	$c\pi/m$	0	
	λ	$-2m\ln(m)$ -	$-2\ln(m)$ 1		$-2\ln(m)$	2	2 0 2 2	
	$m^2\delta(\lambda)$	m			-1	2		
	m	m πm π		Г	0	π	π	Bazavov et al., [HotQCD arXiv: 1205.3535
	m^2	πm^2	π	m	0	πm	πm	

n>2 point correlation functions and their susceptibilities are needed to investigate U(1) breaking only if $\rho(\lambda)$ is analytic in m²

fits to the Dirac Eigenvalue spectrum

- current fitting ansatz to the Dirac Eigenvalue spectrum gives good description of χ_{π} χ_{δ} at three highest temperatures
- $SU(2)_L x SU(2)_R$ symmetry breaking term dominates below T_c while near zero modes contribution dominates above T_c

Underlying mechanism of $U(I)_A$ breaking

• Resulting from non-zero global topology

density of exact zero modes ~ I/\sqrt{V}

• In a relatively dilute gas of instantons and anti-instantons (DIGA)

density of near zero modes independent of V

No evidence of $\rho(\lambda)$ shrinking by a factor of sqrt(8) from 16³ to 32³ lattices is found, which favors DIGA

Chirality of near zero modes

Distribution of chirality per configuration:

- obeys bimodal if coming from nonzero topology
- obeys binomial if coming from a dilute gas of instantons

26/3I

Distribution of chirality

data behaviors more like a binomial contribution

a dilute instanton gas model can describe the non-zero $U(I)_A$ breaking above T_c !

mass dependence of chiral symmetry restorations

mass dependence of chiral symmetry restorations

disconnected susceptibilities

Non-zero values of χ_{disc} suggest the breaking of U(I)_A symmetry in the current T window

 χ_{disc} / T² at the physical quark mass peaks at T_{pc}=154 MeV consistent with the result from staggered fermions

O(N) scaling behavior in the high temperature region Magnetic Equation of State (MEoS):

 $M = h^{1/\delta} f_G(z), z = t/h^{1/\beta\delta}$

external field: $h = \frac{I}{h_0} \frac{m_l}{m_s}$ reduced temperature: $t = \frac{I}{t_0} \frac{T - T_c}{T_c}$

 $f_G(z)$: universal scaling function, O(N) etc β, δ : universal critical exponents

According to O(4) scaling for large positive values of z, i.e. high T

30/31

O(N) scaling behavior in the high temperature region Magnetic Equation of State (MEoS):

 $M = h^{1/\delta} f_G(z), z = t/h^{1/\beta\delta}$

external field: $h = \frac{I}{h_0} \frac{m_l}{m_s}$ reduced temperature: $t = \frac{I}{t_0} \frac{T - T_c}{T_c}$

 $f_G(z)$: universal scaling function, O(N) etc β, δ : universal critical exponents

According to O(4) scaling for large positive values of z, i.e. high T

The mass independence of chiral susceptibility observed in the high temperature region indicates the O(4) scaling

> Another evidence of the breaking $U(I)_A$ symmetry

30/31

Summary

- Calculation with DWF at the physical pion mass on Nt=8 lattices
 - Crossover behavior
 - $T_{pc} \approx 154 \text{ MeV}$
 - * agreement with staggered results

- U(1)_A symmetry of 2+1 flavor QCD on Nt=8 lattices
 remain broken up to 195 MeV
 breaking weakens rapidly after the restoration of SU(2)_LxSU(2)_R
 quantitatively explained by near zero modes
 - well described by a dilute gas of instantons and anti-instantons