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Orders of magnitude for magnetic fields

Neodymium magnet

Typical magnet 50G

12,500G
(strongest permanent magnet)

Strongest continuous 
magnetic field 
produced in a laboratory

450,000G

Magnetars

Heavy ion collisions

The early Universe
(Electroweak transition)

～104MeV2～1017 G

～1022 G

～1013 G

Wikipedia

http://en.wikipedia.org/wiki/Orders_of_magnitude_(magnetic_field)
http://en.wikipedia.org/wiki/Orders_of_magnitude_(magnetic_field)


QCD + magnetic fields

2

pointing in the positive z direction. Such a field can be
implemented by multiplying the U 2 SU(3) links of the
lattice by complex phases. The specific choice of these
phases and our setup are detailed in Ref. [44]. The exter-
nal field couples only to the quark electric charges qf with
f labelling the different flavors. Thus, the magnetic field
only appears in combinations qfB.

In a finite periodic volume, the magnetic flux is quan-
tized [45, 46]. This quantization on a lattice with spacing
a amounts to,

(Nsa)
2 · qdB = 2⇡Nb, Nb 2 Z, (1)

where the smallest quark charge (that of the down quark),
|qd| = e/3 enters, with e > 0 being the elementary charge.
Here Ns is the number of lattice sites in a spatial direction
(our lattices are symmetric in space). Similarly, Nt counts
the lattice points in the temporal direction. The spatial vol-
ume of the system is given by V = (Nsa)3 and the temper-
ature is related to the inverse temporal extent of the lattice
as T = (Nta)�1.

The quark condensate can be derived from the partition
function, which in the staggered formulation of QCD with
three flavors (f = u, d, s) is given by the functional inte-
gral,

Z =
Z

DU e��Sg
Y

f=u,d,s

[detM(U, qfB,mf )]
1/4 ,

(2)
where � ⌘ 6/g2 is the inverse gauge coupling, Sg the
gauge action and M(U, qB,m) = /D(U, qB) + m1 the
fermion matrix. For Sg we use the tree-level improved
Symanzik action, while in the fermionic sector we employ
a stout smeared staggered Dirac operator /D. The details of
the lattice action can be found in Refs. [44, 47]. The lattice
sizes range from 243⇥32 to 403⇥48 for the zero temper-
ature simulations, while at non-vanishing T we investigate
243 ⇥ 6, 243 ⇥ 8 and 283 ⇥ 10 lattices. We set the quark
masses to their physical values, with mass-degenerate light
quarks: mu = md ⌘ mud. The electric charges of the
quarks are qd = qs = �qu/2 = �e/3, therefore we
need to treat each flavor separately. The line of constant
physics (LCP) [mud(�),ms(�)] was determined by fix-
ing the ratios M⇡/fK and MK/fK to the experimental
values. The lattice spacing a(�) is defined by keeping
fK = f lat

K (�)/a(�) fixed, for details see Ref. [48]. At
T = 0 the continuum limit a ! 0 corresponds to � ! 1.
At nonzero temperature, it is convenient to define the con-
tinuum limit as Nt ! 1, keeping T fixed.

The quark condensate is defined as the derivative of lnZ
with respect to the lattice mass parameter

 ̄ f (B, T ) ⌘ T

V

@ lnZ(B, T )

@mf
. (3)

To carry out the continuum limit, the lattice condensate
 ̄ needs to be renormalized since it contains additive (for

FIG. 1. The change of the renormalized condensate due to the
magnetic field at T = 0 as measured on five lattice spacings and
the continuum limit.

m > 0) and multiplicative divergences. These cancel [44]
in the following combination,

⌃u,d(B, T ) =
2mud

M 2
⇡F

2

⇥
 ̄ u,d(B, T )�  ̄ u,d(0, 0)

⇤
+1,

(4)
where, to obtain a dimensionless quantity, we divided by
the combination M 2

⇡F
2 which contains the zero-field pion

mass M⇡ = 135 MeV and (the chiral limit of the) pion de-
cay constant F = 86 MeV [49]. This specific combination
enters the Gell-Mann-Oakes-Renner relation,

2mud ·  ̄ (0, 0) = M 2
⇡F

2 + · · · . (5)

Note that the normalization in definition (4) can easily be
converted into the slightly different one employed in for-
mer studies by the Budapest-Wuppertal collaboration (e.g.
Refs. [8, 50]) and in Ref. [44]. We define the change of the
condensate due to the magnetic field as

�⌃u,d(B, T ) = ⌃u,d(B, T )� ⌃u,d(0, T ). (6)

Note that the  ̄ (0, 0) term cancels from this difference.
In our normalization, Eq. (6) defines the change of the con-
densate caused by a nonzero B, in units of the chiral con-
densate at B = 0 and T = 0. This normalization will be
advantageous when comparing the lattice results to �PT
and model predictions, which are usually given in units of
 ̄ (0, 0). The +1 is included in Eq. (4) so that the chiral
limit of the condensate is fixed to 1 at T = B = 0, and ap-
proaches 0 as T ! 1. At nonzero quark mass ⌃u,d will
still start from 1 at T = B = 0. At very high tempera-
tures, however, it is well known from the free case [51, 52]
that the condensate receives a contribution ⇠ mT 2. This
term is negligible for the temperatures under study and it
cancels exactly from �⌃u,d.

Results.—In Fig. 1 we display the renormalized differ-
ence �(⌃u + ⌃d)/2 as a function of B at T = 0, for five
different lattice spacings. We carry out the continuum limit
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Chiral symmetry breaking is enhanced in B.
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10 Summary

In this paper we studied the finite temperature transition of QCD in the presence of external (elec-

tro)magnetic fields via lattice simulations at physical quark masses. The extrapolation to the con-

tinuum limit is carried out, and finite size effects are under control. The results are relevant for the

description of both the evolution of the early universe and of noncentral heavy ion collisions.

We obtained the phase diagram of QCD in the B − T plane using three observables in the

phenomenologically interesting region of 0 ≤ eB ! 1 GeV2. Performing a finite volume scaling study

we found that the transition remains an analytic crossover up to our largest magnetic fields, with the

transition width decreasing only mildly. This rules out the existence of a critical endpoint in the B−T

phase diagram below eB = 1 GeV2. Moreover, our results indicate that the transition temperature

significantly decreases with increasing B. This result contradicts several model calculations present in

the literature which predict an increase in Tc as B grows (see the summary in section 1). We presented

indications that the response of Tc to the external field can be traced back to the behavior of the chiral

condensate as a function of T and B. We showed that this behavior is more complex than is predicted

by most model calculations (where the condensate increases with B for any temperature), and that it

depends very strongly on the quark masses.

Figure 10: Our final result: the QCD phase diagram in the magnetic field - temperature plane. The colored
bands represent the pseudocritical temperature as defined from inflection points of the renormalized chiral
condensate ūur + d̄dr (red) and the strange quark number susceptibility cs2 (blue) in the continuum limit. Also
indicated by the dashed vertical lines are the maximal magnetic fields produced at RHIC and at the LHC. The
large B region of the phase diagram is relevant for the evolution of the early universe.

We summarize our results in figure 10, which shows the QCD phase diagram in the B − T

plane as defined using the renormalized chiral condensate ūur + d̄dr and the strange quark number

susceptibility cs2 in the continuum limit. By comparing our magnetic fields to the maximal fields that

may be produced in noncentral heavy ion collisions we conclude that the decrease in Tc is negligible

for RHIC and may be up to 5 − 10 MeV for the LHC. Moreover, the effect grows with the magnetic

field, exceeding 20% for cs2 at eB = 1 GeV2. This may have a significant impact on the description of

the QCD transition during the evolution of the early universe.
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Decreasing Tc!
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QCD + magnetic field at finite T

Possible explanations:
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QCD + magnetic fields
Chiral magnetic effect
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J i
V =

X

f

qfBiNc

2⇡2
µA

J i
A =

X

f

qfBiNc

2⇡2
µ

closely related to chiral anomaly.

Chiral separation effect
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Hadron spectra in B
in particular, 

Today’s focus:

Vector mesons



Charged particle in a magnetic field

Classical equation of motion
Hẍ = e(E + ẋ⇥B),

H =
p

p2 +m2 Lorentz force

B

(Landau) quantization
Closed orbital motion in the transverse plane



Continuum

Discrete

B
Landau quantization

Landau quantization Zeeman splitting

E2 = p2z +m2 + (2n+ 1)qB � gszqB

Effectively 1+1D



Vector meson mass
m2

⇢(B) ⇡ m2
⇢ � eB

Why is a vector meson interesting?

m2
⇢(B = Bc) = 0

Vector meson condensation?
Schramm, Muller, Schramm (’92) 
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Does a charged vector 
meson condense in 
a strong B in QCD?



Model study I

Hadronic model

Chernodub(’10)(’11), Chernodub, Doorsselaere, Verschelde (’11)

W condensate is accompanied by a similar lattice vortex
state [12,13]. Note that in the second example the
external field is the electromagnetic field and not the color
(gluon) one.

Our work is based on the fact that the ! meson is the
charged vector particle with the gyromagnetic ratio g ¼ 2
so that this particle may condense in a background of
strong enough magnetic field. It is important to stress
that in all discussed cases of the spontaneous condensa-
tion—we mentioned the gluons in QCD [11], theW bosons
in the electroweak theory [12,13], and the ! mesons in
QCD (this paper)—the condensation takes place in the
vacuum at zero temperature (as opposed to dense and/or
hot environment).

The structure of the paper is as follows. In Sec. II we
outline the basic idea of the !-meson condensation. In the
same section we argue that the ! mesons are (at least,
partially) stabilized by the strong magnetic field back-
ground. This is an important property which should make
the ! condensate ‘‘intrinsically’’ stable against decays of
the ! mesons (the ! mesons have a very short lifetime in
the absence of the external fields). In Sec. III we describe
the quantum electrodynamics of the ! mesons. Section IV
is devoted to a short overview of basic features of the
Ginzburg-Landau model of the superconductivity (homo-
geneity, isotropy, effects of the magnetic field, the
Abrikosov vortices, the Meissner effect, the London equa-
tions). In Sec. V we discuss the same features in the
superconducting state of condensed ! mesons in QCD
and find a few similarities and many surprising dissimilar-
ities with the ordinary superconductivity. The last section
is devoted to our conclusions.

II. ! MESONS IN STRONG MAGNETIC FIELD:
CONDENSATION AND LONGER LIFE

A. Condensation of charged ! mesons

The basic idea of our work is as follows. Consider a
charged relativistic spin-s particle moving in a background
of an external magnetic field. Without loss of generality we
assume that the magnetic field ~Bext ¼ ð0; 0; BextÞ is directed
along the z axis, Bext $ 0 and we consider spatially uni-
form and time-independent external fields only. The energy
levels " of the free particle of the mass m in the magnetic
field are characterized by three parameters: the nonnega-
tive integer n $ 0, the spin projection on the field’s axis
sz ¼ %s; . . . ; s, and the particle momentum along the
field’s axis, pz:

"2n;szðpzÞ ¼ p2
z þ ð2n% 2sz þ 1ÞeBext þm2: (1)

In this work we consider the charged particles, pions (s ¼
0) and the vector particles, ! mesons (s ¼ 1), for reasons
that will be clear later. For a moment, we assume that these
particles are free, so that their (squared) minimal effective
masses, corresponding to lowest energy states (1) with
pz ¼ 0, are respectively,

m2
"'ðBextÞ ¼ m2

"' þ eBext; (2)

m2
!'ðBextÞ ¼ m2

!' % eBext: (3)

The zero-field vacuum masses of the "' and !' mesons
are, respectively [14],

m" ¼ 139:6 MeV; m! ¼ 775:5 MeV: (4)

Equation (3) implies that the lowest energy of the
charged ! meson in the external magnetic field may be-
come purely imaginary if the magnetic field exceeds the
following critical value:

Bc ¼
m2

!

e
( 1016 Tesla: (5)

This observation indicates that the strong magnetic field
(Bext > Bc) makes the QCD vacuum unstable toward con-
densation of the charged !mesons. This new QCD effect is
very similar to the magnetic-field-induced condensation of
theW bosons which was predicted by Ambjørn and Olesen
[12,13]. The behavior of the lowest mass (3) of the charged
!' meson in the region 0 ) Bext ) Bc is shown in Fig. 1
by the solid line.
The subtle point of Eq. (3) [and of Eq. (1) for s ¼ 1 as

well] is that the gyromagnetic ratio of the vector !' meson
is set to be g ¼ 2. In fact, this g-factor is ‘‘anomalously’’
large compared to the standard gyromagnetic ratio gmin ¼
1 of a charged vector particle which is minimally coupled
to the electromagnetism. Notice, that it is the anomalous
gyromagnetic ratio gW ¼ 2 which drives the condensation
of the W bosons in the strong magnetic field [12,13]. The

condensedeBeB 0 eBc

2m
B m B m 0

m B

m 0

0

0.0 0.2 0.4 0.6 0.8
0.0

0.2

0.4

0.6

0.8

eB GeV2

m
G

eV

FIG. 1 (color online). Masses of the lowest!-meson eigenstates
and of the products of their dominant decay modes as functions of
the external magnetic field B * Bext. The left (red) point and the
middle (blue) point mark the onsets of the"'-stability regions for
the neutral (11) and charged (9) !mesons, respectively. The right
(green) point marks the critical field Bc which corresponds to the
onset of the !' condensation (5).
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4

where ✓
0

is a constant phase, C
0

⇡ 1.2, C
�

⇡ 0.51 and
the quark mass m

q

is given in Eq. (14). At B < BNJL

c

the
condensate (22) is zero. The phase transition at B = B

c

is of the second order with the critical exponent 1/2.
Thus, the magnetic field induces the quark condensate

hū�
1

di = �ihū�
2

di = ⇢
0

(B)K
⇣x

1

+ ix
2

L
B

⌘
⌘ ⇢(x?), (23)

where ⇢
0

(B) = �
0

(B)/G
V

. Using known (see, e.g., Ref.
[18]) general properties of the function K(z), Eq. (19),
we conclude that the ground state should be given by a
periodic (in general) lattice of a new type of topological
vortices which are parallel to the magnetic field. The
phase of the condensate (23) winds around the center of
each vortex where the absolute value of ⇢(x?) vanishes.

The condensate (23) locks the local U(1)
e.m.

trans-
formations with the global O(2)

rot

rotations of the co-
ordinate space about the magnetic field axis [7, 20]:
U(1)

e.m.

⇥O(2)
rot

! G
lat

, where G
lat

is a discrete sym-
metry group of rotations of the ⇢-vortex lattice.

The new vacuum state is superconducting. One can
show that there is no B-transverse current, J1=J2=0,
so that the electric current flows along the magnetic
field axis only. In a very weak (test) electric field
~E = (0, 0, E

z

) with E
z

⌧ B, the induced electric cur-
rent in the new vacuum state (23) in a linear-response
approximation is (we use the retarded Green functions):

Jµ(x) =
X

f=u,d

q
f

h ̄
f

�µ 
f

i ⌘ �tr[�µQ̂S(x, x)] , (24)

We average the current (24) over the B-transverse
plane and, in the leading order in powers of ⇢, we get:

@Q(xk)

@z
+
@J (xk)

@t
=

2C
q

(2⇡)3
e3
�
B �BNJL

c

�
E

z

, (25)

where Q is the plane-averaged electric charge density J0,
J is the plane-averaged current Jz, and C

q

⇡ 1 [21]. At
B < B

c

the right hand side of Eq. (25) is zero. Apart
from prefactors, the transport laws in the NJL model (25)
and in the ⇢-meson electrodynamics [7] are identical.

The linear-response law (25) can be rewritten in a
Lorentz-covariant form, @[µ,J⌫] = � · (F, eF ) eFµ⌫ , via the
invariants (F, eF ) = 4( ~B, ~E) and (F, F ) = 2( ~B2 � ~E2).
Here eF

µ⌫

= ✏
µ⌫↵�

F↵�/2 and � is a function of (F, F ) [20].
Equation (25) is a London equation for an anisotropic

superconductivity. Thus, we have just shown that the
strong magnetic field induces the new electromagneti-
cally superconducting phase of the vacuum if B > B

c

.
An empty space becomes an anisotropic superconductor.

The superconductivity of the vacuum is a new e↵ect
which is realized at the QCD-QED interface. This mech-
anism should not work in the pure QED since electrically
charged spin-1 bound states are absent there.

On general grounds one can expect that increase in
temperature T (which, in general, should be of a hadronic

scale) should lead to an evaporation of the ⇢ condensate
with a loss of the superconductivity. The suggested low-
T part of the B � T phase diagram is shown in Fig. 1.

             Phase of
  electromagnetic
superconductivity

Superconducting transition

B Bc0

Hadronic phaseT 

FIG. 1. Low-temperature part of the QCD phase diagram.
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In the seminal paper [17], the effect of including the nontrivial eB-induced dynamics on the value of the naive critical
eBc = m2

r

was estimated roughly to be about 15%, so that eBc = m2
r

appeared to be an educated guess to set the scale
at which new QCD effects would appear. Our result supports this, since including the chiral magnetic catalysis ’only’
leads to a ⇠ 10% correction on the critical magnetic field. In [22], a quenched Nf = 2 lattice simulation was made
of the r condensate, also revealing an estimate for the critical magnetic field, eBc ⇡ 0.924 GeV2, which is somewhat
larger than our result (109). It is reassuring that two quite distinct non-perturbative approaches, be it our holographic
analysis or the lattice output, are in qualitative agreement.
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FIG. 6: The eB-dependence of M2, M2 and m2
r± = 1

2 (M2 + M2
).

0.2 0.4 0.6 0.8 1.0
eB HGeV2L

-0.4

-0.2

0.2

0.4
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mr±
2 HeBL - eB

FIG. 7: The effective mass squared m2
e f f (eB) = m2

r± (eB)� eB of the field combinations r and r

+ in eq. (104) as a function of eB,
the blue (red) curve corresponding to the case where m2

r± is eB-(in)dependent, (not) taking the chiral magnetic catalysis effect into
account. m2

e f f (eB) goes through zero at eBc, eq. (109).

What happens in the original Sakai-Sugimoto model?

In the original Sakai-Sugimoto model, with u0 ⌘ uK = 1/MK and L taking its maximum possible value (48), the
embedding of the flavour branes is unaffected by the presence of the magnetic field. From this we can conclude
that the original Sakai-Sugimoto model is unable to capture the magnetically induced explicit breaking of chiral
symmetry, as well as the chiral magnetic catalysis. It does describe the Landau levels through the mass equation of
the r mesons living on the flavour branes, consistent with the prediction of a r meson condensation at eBc = m2

r

. The
constituent quarks are always massless in this setting, which is evident from the identification (78) for u0 = uK.

Callebaut, Dudal, Verschelde (’10) (’11), 
Ammon, Erdmenger, Kerner, Strydom (’11), 
Bu, Erdmenger, Shock, Strydom(’12),
Callebaut, Dudal (’13) 

http://arxiv.org/abs/1105.2217
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http://arxiv.org/abs/1102.3103
http://arxiv.org/abs/1102.3103
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http://arxiv.org/abs/1105.2217
http://dx.doi.org/10.1016/j.physletb.2011.10.067
http://dx.doi.org/10.1016/j.physletb.2011.10.067
http://arxiv.org/abs/1210.6669
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http://arxiv.org/abs/arXiv:1309.5042
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Vacuum superconductivity
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FIG. 5. Absolute value of the superconducting condensate ⇢,
Eq. (47) at B = 1.01Bc in the transversal (x

1

, x

2

) plane.

FIG. 6. The density plot of the phase '⇢ = arg ⇢ of the
charged ⇢–meson condensate (47) as a function of transversal
coordinates x

1

and x

2

. The white lines corresponds to the
cuts in the phase, and the variations in color illustrate the
behavior of the magnitude of the phases. The endpoints of
the cuts mark the positions of the superconductor (⇢) vortices.
A three-fold di↵erence in coordinate scales of this figure and
Fig. 5 should be stressed.

at one-dimensional manifolds (semi-infinite lines) which
start at the points where the condensate ⇢ is vanishing,
and end at spatial infinity. The position and the shape
of the cuts can be changed by the U(1) gauge transfor-
mations (36), while the endpoints of the cuts are gauge

invariant quantities.
Thus, the ⇢ = 0 points of the charged condensate do in-

deed mark the positions of the superconductor vortices2

and organize themselves into the equilateral triangle lat-
tice.

3. Electric currents and superconductivity

The electric current density of the ⇢ meson degrees of
freedom can be derived from Eq. (30):

J
µ

= ie
⇥

⇢⌫†⇢
⌫µ

� ⇢⌫⇢†
⌫µ

+ @⌫(⇢†
⌫

⇢
µ

� ⇢†
µ

⇢
⌫

)
⇤

� e

g
s

@⌫f (0)

⌫µ

. (63)

In the ground state the longitudinal components of the
electric current are vanishing, J

0

= J
3

= 0, while the
transversal current,

J?(x?) ⌘ J
1

(x?) + iJ
2

(x?) , (64)

is a nonlocal function of the superconducting conden-
sate [14]:

J?(x?) = 2iem2

0

·
⇣ @

�@2

? +m2

0

|⇢|2
⌘

(x?) . (65)

The nonlocal nature of the relation between the transver-
sal electric current (65) and the charged condensate ⇢
distinguishes the QCD vacuum from the GL supercon-
ductor (2).
The electric current (65) is a persistent current of the

charged ⇢-meson degrees of freedom. The current origi-
nates from the quarks and antiquarks which popup from
the virtual state and form a condensate with the quan-
tum numbers of the charged ⇢-meson. This current is
always present in the superconducting phase at B > B

c

and it vanishes in the normal phase of the vacuum.
In order to simply further numerical calculations it is

useful to represent the basic nonlocal part of Eq. (65)

R(x?; ⇢) =
⇣ m2

0

�@2

? +m2

0

|⇢|2
⌘

(x?) , (66)

as follows:

R(x?; ⇢) =

Z

d2k

(2⇡)2
eik1x1+ik2x2

m2

0

k2 +m2

0

q(�k; ⇢) , (67)

where the quantity q(k; ⇢) is defined in Eq. (50) and ⇢
is given in Eq. (47) with N = 2 symmetry. For the
triangular lattice with C

1

= iC
0

one can explicitly show
that

2 We call the topological defects in the charged ⇢ condensate as
“superconductor vortices” in order to distinguish them from “su-
perfluid vortices” which are similar vortexlike defects in the neu-

tral ⇢(0) condensate.

Chernodub, Van Doorsselaere, Verschelde, Phys. Rev. Phys. Rev. D 85, 045002 (2012) 

Similar result in holographic approach: Bu, Erdmenger, Shock, Strydom (’13)

http://arxiv.org/abs/1111.4401
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http://arxiv.org/abs/1210.6669


Lattice study I

Figure 3: The superconducting condensate ⌘ = |h⇢i| of the charged ⇢ mesons as the
function of the magnetic field B. The green points correspond to the condensate calculated
for small lattice 144, while the blue squares represent the data extrapolated to an infinite
volume L ! 1. The dashed blue line is the fit by the linear function (15). The red arrow
marks the point of the insulator–superconductor phase transition (16).
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Figure 4: The massive parameter µ corresponding to the best fits (11) and (12), (13).
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function of the magnetic field B. The green points correspond to the condensate calculated
for small lattice 144, while the blue squares represent the data extrapolated to an infinite
volume L ! 1. The dashed blue line is the fit by the linear function (15). The red arrow
marks the point of the insulator–superconductor phase transition (16).
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Bragutaa, Buividovichb,Chernodubd, Kotovb, 
Polikarpovb, Phys. Lett. B718, 667 (2012)

Bragutaa, Buividovichb,Chernodubd, Kotovb, Polikarpovb (’12)

|h⇢
i|

http://dx.doi.org/10.1016/j.physletb.2012.10.081
http://dx.doi.org/10.1016/j.physletb.2012.10.081
http://dx.doi.org/10.1016/j.physletb.2012.10.081
http://dx.doi.org/10.1016/j.physletb.2012.10.081
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Lattice Study II (our study)
YH, Yamamoto (’12)
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mixing exists even for in the connected diagram. Thus,
the µ = 3 component of a ρ meson is an excited state of a
pion. At least in the weak magnetic field limit, there are
a large number of magnetic-splitting states of the pion
below the energy level of the ρ-meson state. We cannot
calculate such a highly excited state in the lattice QCD
simulation.
For neutral π and ρ mesons, we calculated only the

connected diagram, which is necessary for the QCD in-
equality. While the disconnected diagram is forbidden
in the absence of the magnetic field, it is allowed in the
presence of the magnetic field because the magnetic field
breaks isospin symmetry. We ignored the disconnected
diagram in this simulation. In this sense, our neutral
mesons are not physical ones.

B. Meson masses

We performed the standard mass analysis of ground-
state mesons in lattice QCD. The meson masses were
extracted from the fitting function

GX(t) = AX cosh[mX(t− aNt/2)] (16)

in large t. The lattice volume is N3
s ×Nt = 163×32. The

numerical results are shown in Fig. 2.
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eB [GeV2]
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π0
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FIG. 2: The meson masses in a magnetic field. The broken
curves are m2

π+(B) = m2
π+(B = 0) + eB and m2

ρ+(B) =

m2
ρ+(B = 0)− eB.

The charged pion mass increases in the magnetic field.
This mass shift can be explained by the naive mass for-
mula m2

π+(B) = m2
π+(B = 0) + eB. As shown in the

figure, this formula well reproduces the present lattice
result in a weak magnetic field. This behavior was also
observed in the full QCD simulation [19]. The lattice
data slightly deviate from this formula in a strong mag-
netic field.
The charged ρ meson mass shows a nontrivial depen-

dence on the magnetic field. When the magnetic field is

weak, the mass is a decreasing function of the magnetic
field. The naive mass formula, m2

ρ+(B) = m2
ρ+(B =

0) − eB, reproduces the lattice data. At eB ≃ 1 GeV2,
the mass has a nonzero minimum. When the magnetic
field is stronger than this value, the mass becomes an
increasing function of the magnetic field. As a conse-
quence, the charged ρ meson is always massive and heav-
ier than the connected neutral pion in the whole range
of the magnetic field. Although the Wilson fermion does
not have the exact positivity, the present lattice result is
consistent with the Vafa-Witten theorem and the QCD
inequality.

The neutral mesons are much more nontrivial. In the
naive mass formula, neutral particles are independent of
a magnetic field. The lattice result suggests, however,
that the neutral meson masses depend on the magnetic
field. This is due to the internal structure of the mesons.
To know how the physical neutral mesons behaves in a
magnetic field, we have to take into account the discon-
nected diagram.

When the magnetic field is extremely strong, i.e.,
eB ≫ 1 GeV2, the masses of all the mesons monoton-
ically increases. This is interpreted as a sign that the
internal quarks obtain the large magnetic-induced mass.
The underlying mechanism is unknown in the present
analysis.

C. Meson condensations

To exclude the possibility of the charged ρ meson con-
densation in lattice QCD, we performed another analysis.
If a meson condensation exists, the ground state becomes
massless and a long-range correlation appears. The cor-
relation function becomes

G′
X(t) = AX cosh[mX(t− aNt/2)] + CX (17)

in large t. If the constant parameter CX is finite, CX

corresponds to the squared meson condensation ⟨X⟩2 and
mX corresponds to the mass of the first excited state. A
similar analysis was performed in a previous work [15].
However, such a constant term can be easily generated
by a finite-volume artifact. We must carefully check the
finite-volume artifact.

We calculated the correlation functions GX(t) with
three lattice volumes N3

s × Nt = 163 × 32, 203 × 40
and 243 × 48, and fitted the results with Eq. (17). In
Fig. 3, we show CX as a function of the lattice volume
V = a4N3

sNt. The magnetic field is fixed at a large
value eB ≃ 4.3 GeV2. In a small volume, Cπ0 and Cρ+

seem finite. In the infinite volume limit, however, all CX

approach to zero. In particular, Cρ+ is zero within the
statistical error. From this analysis, we conclude that the
charged ρ meson is not condensed by a magnetic field.

As shown in Fig. 3, Cπ0 is large compared to other
mesons. This is an expected behavior because the con-
nected neutral pion is the lightest particle and the finite-
volume artifact is the largest for the lightest particle. If

q
m2

⇢ � eB

p
m2

⇡ + eB
Quench

Bc

YH and Arata Yamamoto 1209.0007,  Phys. Rev. D87 (2013) 094502 

http://arxiv.org/abs/1209.0007
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http://arxiv.org/abs/1209.0007
http://arxiv.org/abs/1209.0007
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where

M11 = (M+−
0 +∆MSE − ⟨aSS⟩)

∣

∣

ω
(0)
1 =ω

(0)
2 =ω±

,

M22 = (M−+
0 +∆MSE − ⟨aSS⟩)

∣

∣

ω
(0)
1 =ω

(0)
2 =ω∓

, (60)

a12 = a21 = ⟨aSS⟩|ω(0)
1 =ω±,ω

(0)
2 =ω∓

and ⟨aSS⟩ is the aver-
aging with the wave function (42) (see [24] for derivation).
The parameters ω± and ω∓ are obtained by minimizing
of corresponding diagonal eigenvalues M+−

0 and M−+
0 ,

the parameter γ0 (see (35)) for the ground state is de-
fined from the condition

∂M0(ω1,ω2, γ)

∂γ

∣

∣

∣

∣

γ=γ0

=
∂ε0,0
∂γ

∣

∣

∣

∣

γ=γ0

= 0. (61)

It is easy to see, that at large eB masses E1,2 tend to
diagonal values

E1(eB → ∞) → M22, E2(eB → ∞) → M11. (62)

The remaining two states have masses

E3 = M++
0 +∆MSE+⟨aSS⟩, E4 = M−−

0 +∆MSE+⟨aSS⟩,
(63)

taken in point (ω(0)
1 ,ω(0)

2 , γ0) in accordance with mini-
mization conditions (24) and (61).
It should be noted, that actually we have eight states

instead of four, since qq̄ systems with different quark
charges behave differently in MF, as we see from our
Hamiltonians. Isospin is not conserved now and each
neutral state splits into two states with different quark
content uū and dd̄.
Let us consider also the particular case of charged me-

son with Hamiltonian (39) in state with sz = 1 (| + +⟩-
state, corresponding to ρ+). The eigenvalue, correspond-
ing to this state, is given by the following expression

Mn(ω, γ) =
eB

2ω
(2N⊥+1)+

√

(

eB

2ω

)2

+
2σ

ωγ
(2n⊥+1)+

+

√

2σ

ωγ

(

n∥ +
1

2

)

−
eB

ω
+
σγ

2
+

m2 + ω2

ω
+

+∆MOGE +∆MSE + ⟨aSS⟩. (64)

Among considered states, the mass of charged meson
ground state (ρ+ with sz = 1) and E2, corresponding
to π0, tend to finite value at large MF due to cancella-
tion of linearly growing terms in εn⊥,nz and in Hσ, while
other masses grow with eB. This is true, provided that
the spin-spin contribution ⟨aSS⟩ remains finite at large
MF. However, it contains the factor ψ2(0) ∼ eB, which
leads to unbounded decrease of E2. As was shown in [24],
this situation is not physical, the total mass eigenvalues
should be positive, and the reason of this decrease is the
unlawful use of the perturbation theory for the poten-
tial cδ(3)(r). One should replace aSS by a smeared out
version, e.g.,

δ(3)(r) → δ̃(3)(r) =

(

1

λ
√
π

)3

e−r
2/λ2

, λ ∼ 1 GeV−1.

(65)

Using the wave function (42), one obtains for ⟨aSS⟩

⟨aSS⟩ =
c

π3/2
√

λ2 + r20(λ
2 + r2⊥)

, c =
8παs

9ω1ω2
. (66)

The smearing length λ on the lattice corresponds to the
lattice unit a (λ ∼ a), in physical situation the relativistic
smearing is connected with the gluelamp mass parame-
ters in D(z) and D1(z), see [19] for details.

FIG. 2. The masses of the systems in GeV as a functions of
eB. See the text for explanations.

In Fig.2 we plot the masses of some selected systems
as a functions of eB (e is the ρ+ charge, not the charge of
individual quarks). Calculations were performed accord-
ing to (59), (63), (64) and the minimization procedure.
The dashed curves correspond to the ρ0 state with sz = 0
(eigenvalue E1), the solid-symbol lines describe ρ0 state
with sz = 1, the lower solid curve refers to the state
of charged meson ρ+ with sz = 1. The black triangles
are from lattice calculations [25]. One can see that the
masses of first states are increasing, while the last one
tends to finite limit in accordance with discussion above
(note, that the results plotted in Fig.2 were obtained for
massless quarks).

VI. DISCUSSION AND CONCLUSIONS

In our treatment of relativistic quark–aniquark system
embedded in MF we relied on pseudomomentum factor-
ization of the wave function and relativistic Hamiltonian
technique. The Hamiltonian for mesons in MF, contain-
ing confinement, one gluon exchange and spin interaction
was derived. Using a suitable approximation for confin-
ing force we were able to calculate analytically meson
masses as functions of the MF. In this paper to simplify

Andreichikov, Kerbikov,  Orlovsky, Simonov,  Phys. Rev. D 87, 094029 (2013)

system in confined potential + magnetic fieldqq̄

http://arxiv.org/abs/1304.2533
http://arxiv.org/abs/1304.2533


Does the vector meson 
condensation really occur in QCD?

Our answer is NO.
I want to convince you this.



Theoretical analysis
Vafa-Witten theorem
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Jensen’s inequality
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Symmetry breaking
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Vafa-Witten theorem

No SSB occurs in the isospin channel.
(B=0, T=0)

lim
✏!0

h�i✏ = 0

Fermion determinant is nonnegative.
Schwarz inequality works.

Fermion operator has no zero modes.
Fermion propagator is well defined.

Order parameter is nonsinglet.
Disconnected diagrams do not contribute.



Vafa-Witten theorem
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Possibility of inhomogeneous phase:
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Multivalued generating functional
Amending the Vafa-Witten Theorem, Li, Wang, Phys.Lett. B721, 141 (2013)

Comment on "Charged vector mesons in a strong magnetic field" 
Chernodub, arXiv:1309.4071

Counter arguments
QCD x QED should be considered

 Vafa-Witten theorem, vector meson condensates, and magnetic-field-induced electromagnetic 
superconductivity of vacuum, Chernodub Phys. Rev. D86, 107703 (2012)

http://arxiv.org/abs/arXiv:1301.7009
http://arxiv.org/abs/arXiv:1301.7009
http://arxiv.org/abs/arXiv:1309.4071
http://arxiv.org/abs/arXiv:1309.4071
http://prd.aps.org/abstract/PRD/v86/i10/e107703
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Counter arguments

Our situation corresponds to a fixed U(1) gauge, 
and no dynamical photons.

Because of gauge symmetry, no NG mode appears 
(Higgs phase),

which is consistent with the Vaffa-Witten theorem, 

eB e ! 0
(Our result does not change in any gauge fixing conditions)

QCD x QED should be considered
 Vafa-Witten theorem, vector meson condensates, and magnetic-field-induced electromagnetic 
superconductivity of vacuum, Chernodub Phys. Rev. D86, 107703 (2012)

withTechnically, it corresponds to a fixed

In this case, the rho meson condensation is 
necessary in the Higgs phase.

His claim

Our claim

http://prd.aps.org/abstract/PRD/v86/i10/e107703
http://prd.aps.org/abstract/PRD/v86/i10/e107703


Nontrivial generating functional
Counter arguments

Amending the Vafa-Witten Theorem, Li, Wang, Phys.Lett. B721, 141 (2013)

If the generating functional 
is not single valued, the 
Vafa-Witten theorem may 
not hold.

The generating 
functional is convex, 
so that it is single 
valued.

�

�

Their claim

Our claim

http://arxiv.org/abs/arXiv:1301.7009
http://arxiv.org/abs/arXiv:1301.7009


Comments

Finite μB ?
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Finite T ? OK!

Fermion determinant is complex.
No positivity.

NO.

Fermion determinant is nonnegative.
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Does VW theorem work at



Generalized NJL model?
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µ � iqAem

µ

Disconnected diagrams also contributes 
the order parameter.

Vector meson carries isospin, so that

NO!
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Supersymmetric model? NO!
Fermion determinant has no positivity.



Summary

Our answer is no.
Vector meson condensation?

4

mixing exists even for in the connected diagram. Thus,
the µ = 3 component of a ρ meson is an excited state of a
pion. At least in the weak magnetic field limit, there are
a large number of magnetic-splitting states of the pion
below the energy level of the ρ-meson state. We cannot
calculate such a highly excited state in the lattice QCD
simulation.
For neutral π and ρ mesons, we calculated only the

connected diagram, which is necessary for the QCD in-
equality. While the disconnected diagram is forbidden
in the absence of the magnetic field, it is allowed in the
presence of the magnetic field because the magnetic field
breaks isospin symmetry. We ignored the disconnected
diagram in this simulation. In this sense, our neutral
mesons are not physical ones.

B. Meson masses

We performed the standard mass analysis of ground-
state mesons in lattice QCD. The meson masses were
extracted from the fitting function

GX(t) = AX cosh[mX(t− aNt/2)] (16)

in large t. The lattice volume is N3
s ×Nt = 163×32. The

numerical results are shown in Fig. 2.
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FIG. 2: The meson masses in a magnetic field. The broken
curves are m2

π+(B) = m2
π+(B = 0) + eB and m2

ρ+(B) =

m2
ρ+(B = 0)− eB.

The charged pion mass increases in the magnetic field.
This mass shift can be explained by the naive mass for-
mula m2

π+(B) = m2
π+(B = 0) + eB. As shown in the

figure, this formula well reproduces the present lattice
result in a weak magnetic field. This behavior was also
observed in the full QCD simulation [19]. The lattice
data slightly deviate from this formula in a strong mag-
netic field.
The charged ρ meson mass shows a nontrivial depen-

dence on the magnetic field. When the magnetic field is

weak, the mass is a decreasing function of the magnetic
field. The naive mass formula, m2

ρ+(B) = m2
ρ+(B =

0) − eB, reproduces the lattice data. At eB ≃ 1 GeV2,
the mass has a nonzero minimum. When the magnetic
field is stronger than this value, the mass becomes an
increasing function of the magnetic field. As a conse-
quence, the charged ρ meson is always massive and heav-
ier than the connected neutral pion in the whole range
of the magnetic field. Although the Wilson fermion does
not have the exact positivity, the present lattice result is
consistent with the Vafa-Witten theorem and the QCD
inequality.

The neutral mesons are much more nontrivial. In the
naive mass formula, neutral particles are independent of
a magnetic field. The lattice result suggests, however,
that the neutral meson masses depend on the magnetic
field. This is due to the internal structure of the mesons.
To know how the physical neutral mesons behaves in a
magnetic field, we have to take into account the discon-
nected diagram.

When the magnetic field is extremely strong, i.e.,
eB ≫ 1 GeV2, the masses of all the mesons monoton-
ically increases. This is interpreted as a sign that the
internal quarks obtain the large magnetic-induced mass.
The underlying mechanism is unknown in the present
analysis.

C. Meson condensations

To exclude the possibility of the charged ρ meson con-
densation in lattice QCD, we performed another analysis.
If a meson condensation exists, the ground state becomes
massless and a long-range correlation appears. The cor-
relation function becomes

G′
X(t) = AX cosh[mX(t− aNt/2)] + CX (17)

in large t. If the constant parameter CX is finite, CX

corresponds to the squared meson condensation ⟨X⟩2 and
mX corresponds to the mass of the first excited state. A
similar analysis was performed in a previous work [15].
However, such a constant term can be easily generated
by a finite-volume artifact. We must carefully check the
finite-volume artifact.

We calculated the correlation functions GX(t) with
three lattice volumes N3

s × Nt = 163 × 32, 203 × 40
and 243 × 48, and fitted the results with Eq. (17). In
Fig. 3, we show CX as a function of the lattice volume
V = a4N3

sNt. The magnetic field is fixed at a large
value eB ≃ 4.3 GeV2. In a small volume, Cπ0 and Cρ+

seem finite. In the infinite volume limit, however, all CX

approach to zero. In particular, Cρ+ is zero within the
statistical error. From this analysis, we conclude that the
charged ρ meson is not condensed by a magnetic field.

As shown in Fig. 3, Cπ0 is large compared to other
mesons. This is an expected behavior because the con-
nected neutral pion is the lightest particle and the finite-
volume artifact is the largest for the lightest particle. If

q
m2

⇢ � eB

p
m2

⇡ + eB

Quench

Bc

If you find any loop hole,  
please let us know!

Vafa-Witten theorem Lattice simulation

Any models based on 
QCD should satisfy this 
theorem.


