1/36

The Quark Mass Gap in Strong Magnetic Fields

Toru Kojo

with Nan Su

(University of Illinois, Urbana-Champaign)

T.K. & Nan Su arXiv: 1211.7318 T.K. & Nan Su

arXiv: 1305.4510

Why QCD in Magnetic Fields ??

2/36

There are at least two reasons to study :

1, QCD in strong magnetic fields may be realized in Nature.

"Core" of compact stars, Quark-Gluon Plasma (QGP)

Why QCD in Magnetic Fields ??

2/36

There are at least two reasons to study :

1, QCD in strong magnetic fields may be realized in Nature.

"Core" of compact stars, Quark-Gluon Plasma (QGP)

2, We can do "B ≠ 0 experiment" on the lattice: (No sign problem)

Excellent "*laboratory*" to study the *interplay*

between quarks and gluons.

^{3/36} Classical mechanics in mag. fields

Quarks have electric charges:wrap around B(Gluons do not)(Lorenz force)

Free Quark's motion in z & t-directions.

Quantum mechanics in mag. fields (spinless, free particles)

Num. of states (for p_z =0)

Quantum mechanics in mag. fields

(spinless, free particles)

periodic → *discretization*

Quantum mechanics in mag. fields

(spinless, free particles)

Quantum mechanics in mag. fields (spin 1/2, free particles)

(orbital + Zeeman splitting)

periodic → *discretization*

Quantum mechanics in mag. fields (spin 1/2, free particles)

The IR phase space for quarks

Size of IR phase space of quarks can be controlled by B.

7/36 Quarks as probes of gluodynamics

A "naive" picture (weak coupling, pert.)

We need non-pert. version of this for most of phenomenologically interesting region

Applications in mind : Dense QCD

8/36

A vital question in dense QCD:

Which µ turns gluodynamics into weak coupling regime?

Applications in mind : Dense QCD

8/36

A vital question in dense QCD:

Which µ turns gluodynamics into weak coupling regime?

Applications in mind : Dense QCD

8/36

A vital question in dense QCD:

Which µ turns gluodynamics into weak coupling regime?

Hopefully, we may get its rough estimate from "B-exp."

9/36

What's current situations of the QCD in B?

Strength of B-field

10/36

Lattice data are available (both for *full* and *quenched*)

History (within my best knowledge)

11/36

1) ChSB in mag. fields (concept) : 1989 -

Klevansky-Lemmer (89), Suganuma-Tatsumi (90),

Gusynin-Miransky-Shovkovy (94-), (for NJL, QED,...)

(Not specific to QCD, "universal aspects" of fermions in B)

History (within my best knowledge)

11/36

1) ChSB in mag. fields (concept): 1989 -

Klevansky-Lemmer (89), Suganuma-Tatsumi (90), Gusynin-Miransky-Shovkovy (94-), (for NJL, QED,...)

(Not specific to QCD, "universal aspects" of fermions in B)

2) QCD in mag. fields (paradigm shift) : 2007 -

Kharzeev-McLerran-Warringa (07), Fukushima-Kharzeev-Warringa (08),..

(QCD topology & Its phenomenological applications)

History (within my best knowledge)

1) ChSB in mag. fields (concept): 1989 -

Klevansky-Lemmer (89), Suganuma-Tatsumi (90), Gusynin-Miransky-Shovkovy (94-), (for NJL, QED,...)

(Not specific to QCD, "universal aspects" of fermions in B)

2) QCD in mag. fields (paradigm shift) : 2007 -

Kharzeev-McLerran-Warringa (07), Fukushima-Kharzeev-Warringa (08),... (QCD topology & Its phenomenological applications)

3) Lattice studies on ChSB & Deconf. : 2008 -

Buividovich et al. (2008) D'Elia-Muckherjee-Sanflippo (2010) Bali et al. (2012) (quenched) (full, heavy pion) (full, physical pion)

Enhanced ChSB in mag. fields

12/36

Area $\sim \Lambda^2_{QCD}$ (transverse phase space)

Enhanced ChSB in mag. fields

12/36

14/36

Models vs Lattice, 2: T_c(B)

Qualitative discrepancy....

Claim: 1

15/36

Discrepancies b.t.w. models & lattice data

comes from

misidentification of the zero-th order effects.

Discrepancies in B-dep. of the chiral condensate

& qualitative behavior of Tc(B) have the same root.

Fluctuation effects are NLO issues. (see below)

Contents

0) Introduction (15 min.)

1) Fermions in strong mag. fields

Some relevant formula

(10 min.)

(20 min.)

2) Quenched QCD in strong mag. fields

Quark mass gap: QCD vs NJL, QED,

Toy (*confining*) model considerations

3) Summary

17/36

1, Fermions in strong mag. fields (Some relevant formula)

^{18/36} **Field theory bases : quark part**

"Ritus bases for non-int. fermions in B"

1) Choose the gauge for EM fields : e.g.) $A_2^{
m em}=Bx_1$

"Ritus bases for non-int. fermions in B"

1) Choose the gauge for EM fields : e.g.) $A_2^{
m em}=Bx_1$

2) Apply "spin projection" :

$$\psi_{\pm} \equiv \mathcal{P}_{\pm}\psi \qquad \mathcal{P}_{\pm} = \frac{1 \pm i\gamma_1\gamma_2 \operatorname{sgn}(e_f D)}{2}$$

18/36

18/36

"Ritus bases for non-int. fermions in B"

1) Choose the gauge for EM fields : e.g.) $A_2^{
m em}=Bx_1$

2) Apply "spin projection": $\psi_{\pm} \equiv \mathcal{P}_{\pm}\psi \qquad \mathcal{P}_{\pm} = \frac{1 \pm i\gamma_1\gamma_2 \operatorname{sgn}(e_f B)}{2}$

3) Expand by proper spatial wavefunctions :

$$\psi_{\pm}(x) = \sum_{l=0} \int rac{\mathrm{d}^2 p_L \mathrm{d} p_2}{(2\pi)^3} \, \psi^{\pm}_{l,p_2}(p_L) \, H_l\Big(x_1 - rac{p_2}{B}\Big) \, \mathrm{e}^{-\mathrm{i} p_2 x_2} \, \mathrm{e}^{-\mathrm{i} p_L x_L}$$

 $p_L \equiv (p_0, p_z)$ Harmonic oscillator w.f. with $m\omega = |eB|$

19/36

The action for the LLL (n=0): $\chi = \psi_+^{l=0}$

r

$$\mathcal{S}_{
m LLL} = \int_{p_L,p_2} ar{\chi}_{p_2}(p_L) \left(-{
m i} p\!\!\!\!/_L + m
ight) \chi_{p_2}(p_L)$$
 (No B-dep. !)

for the **n**-th hLL : $\psi_n = \psi_+^{l=n} + \psi_-^{l=n-1}$

19/36

The action for the LLL (n=0): $\chi = \psi_+^{l=0}$

$$\mathcal{S}_{
m LLL} = \int_{p_L,p_2} ar{\chi}_{p_2}(p_L) \left(-{
m i} p\!\!\!\!/_L + m
ight) \chi_{p_2}(p_L)$$
 (No B-dep. !)

for the n-th hLL : $\psi_n = \psi_+^{l=n} + \psi_-^{l=n-1}$

The propagator :

$$\left\langle \psi_{n,p_2}(p_L)\bar{\psi}_{n',p_2'}(p_L')\right\rangle = S_n^{2\mathrm{D}}(p_L) \times \delta_{nn'}\delta(p_2 - p_2')\delta^2(p_L - p_L')$$

(1+1)-dimensional for each index "n" (No p₂ – dep.)

Important formula

Important formula

20/36

^{21/36} Chiral condensate on the lattice

Quenched SU_c(2)

Full SU_c(3)

Buividovich et al, 2010

 $=\frac{|eB|}{2\pi}$ $\langle \bar{\psi}\psi \rangle$
^{21/36} Chiral condensate on the lattice

Quenched SU_c(2)

Full SU_c(3)

Buividovich et al, 2010

22/36

Problems in most theories...

(The NJL, QED-like treatments, Sakai-Sugimoto models,....)

Problems in most theories...

22/36

(The NJL, QED-like treatments, Sakai-Sugimoto models,....)

Problem 1) B-dep. of the chiral condensate $M_q \sim |eB|^{1/2} \implies \langle \bar{\psi}\psi \rangle_{2D} \sim |eB|^{1/2}$ $\langle \bar{\psi}\psi \rangle_{4D} \sim |eB|^{3/2} \neq \text{ lattice data}$

Problems in most theories...

(The NJL, QED-like treatments, Sakai-Sugimoto models,....)

Problem 1) *B-dep. of the chiral condensate*

Claim: 2

Within the domain of B studied on the lattice,

the quark mass gap should be :

$$M_q \sim \Lambda_{\rm QCD}$$

If so,

$$T_{
m chiral}(B)\sim M\sim \Lambda_{
m QCD}$$
 (instead of $\sim |eB|^{1/2}$)

Claim: 2

Within the domain of B studied on the lattice,

the quark mass gap should be :

$$M_q \sim \Lambda_{\rm QCD}$$

If so,

$$T_{
m chiral}(B) \sim M \sim \Lambda_{
m QCD}$$
 (instead of $\sim |eB|^{1/2}$)

Then we have a better chance to explain reduction of T_c & other gluonic quantities (Quarks do not decouple from gluons)

24/36

2, Quenched QCD in strong mag. fields

We *separate* issues of *fluctuations* such as back reaction from quark to gluon sector, mesonic fluctuations,

etc., etc.,....

For couplings b.t.w. different "orbital" levels

For couplings b.t.w. different "orbital" levels

Soft gluon contributions are suppressed

LLL mass gap : 3-distinct contributions 1) Coupling with $l \ge 1$ hard $l \ge 1$ $l \ge 1$ hard hard $l \ge 1$ hard hard

LLL mass gap : 3-distinct contributions 1) Coupling with $l \ge 1$ hard $l \ge 1$ $l \ge 1$ hard $l \ge 1$ hard $l \ge 1$ $l \ge 1$ hard $l \ge 1$ $l \ge 1$

LLL mass gap : 3-distinct contributions 1) Coupling with $l \ge 1$ hard $l \ge 1$ $l \ge 1$ hard $l \ge 1$ hard $l \ge 1$ $l \ge 1$ hard $l \ge 1$ $l \ge 1$

2) Coupling with l=0 & n=1

LLL mass gap : 3-distinct contributions 1) Coupling with $l \ge 1$ hard $l \ge 1$ $l \ge 1$ hard $l \ge 1$ hard $l \ge 1$ $l \ge 1$ hard $l \ge 1$ $l \ge 1$ hard $l \ge 1$ $l \ge$

2) Coupling with l=0 & n=1

28/36 LLL mass gap : 3-distinct contributions

3) Couplings within LLLs

Everything must be treated "Non-perturbatively"

28/36 LLL mass gap : 3-distinct contributions

3) Couplings within LLLs

Natural framework → Schwinger-Dyson eq. with

Non-perturbative "force"

e.g.) full gluon propagator & vertex for quenched QCD

^{29/36} Structure of the Schwinger-Dyson eq.

1) Contact interactions (NJL, etc.)

Now suppose: QCD force has strong "*IR enhancement*"

$$\int_{q_{\perp}} \mathrm{e}^{-\frac{q_{\perp}^2}{2|eB|}} D^{\mathrm{4D}}(q_L, q_{\perp})$$

Now suppose: QCD force has strong "IR enhancement"

$$\int_{q_{\perp}} \mathrm{e}^{-\frac{q_{\perp}^2}{2|eB|}} D^{\mathrm{4D}}(q_L, q_{\perp})$$

For small $q_{perp} \sim \Lambda_{QCD}$: we can set : $e^{-\frac{q_{\perp}^2}{2|eB|}} \sim 1$

Now suppose: QCD force has strong "IR enhancement"

32/36

Now suppose: QCD force has strong "IR enhancement"

Claim: 3

More and more "*IR enhancement*" of forces, then less and less *B-dep*. of the quark mass gap.

The key is "contrast" between IR and UV forces.

Playing with a toy model

"Linear rising " potential for color charges

$$D_{\mu\nu} = C_F \times g_{\mu 0} g_{\nu 0} \times \frac{\sigma}{(\vec{p}^2)}$$

Motivated by Coulomb gauge studies.

(ref: Gribov, Zwanziger)

- The model has " *IR enhancement* ".
- Confining, in the sense that
 "No qq continuum in the meson spectra."
- Oversimplifications: No 1/p² tail, No color mag. int., etc.
- We will solve eqs. within " rainbow ladder "

string tension

Schwinger-Dyson eq. for the LLL

e.g.) scalar part
$$M(p_L) = \int_{q_L} \gamma_0 \, S_{\text{LLL}}^{\text{2D}}(p_L - q_L; M) \, \gamma_0 \, \bigotimes \int_{q_\perp} e^{-\frac{q_\perp^2}{2|eB|}} D_{00}^{\text{4D}}(q)$$

Schwinger-Dyson eq. for the LLL

Schwinger-Dyson eq. for the LLL

35/36

e.g.) scalar part
$$M(p_L) = \int_{q_L} \gamma_0 S_{\text{LLL}}^{2\text{D}}(p_L - q_L; M) \gamma_0 \bigotimes \int_{q_\perp} e^{-\frac{q_\perp^2}{2|eB|}} D_{00}^{4\text{D}}(q)$$
for large P

The **B-dependence** dropped out, and we get

$$M(p_L) \simeq \int_{q_L} \gamma_0 S_{LLL}^{2D}(p_L - q_L; M) \gamma_0 \times \frac{\sigma}{q_z^2}$$

SD-eq. for 't Hooft model (QCD₂) in A_z =0 gauge (whose properties are known)

Summary

1) Magnetized QCD is a good "laboratory".

- 2) To explain data for chiral condensate & $T_c(B)$, $M_q(B)$ should be ~ Λ_{QCD} , instead of ~ $|eB|^{1/2}$.
- 3) The key is IR enhancement of QCD forces.
- 4) With $M_q(B) \sim \Lambda_{QCD}$, fluctuations are now operative.

see) Fukushima-Pawlowski (12), Fukushima-Hidaka (12)→ mesonic flucs.
 Effects on gluonic sector → Ozaki's talk (this workshop)

^{28/36} Magnetized QCD : Basics, 8 The QCD phase diagram in (B-T) planes.

Tc is determined by dissociation of $\langle \psi \psi
angle_{
m 2D}$

On Magnetic Catalysis Lattice simulations indeed confirmed.

30/36

However, its B-dep. is different from theories

On B-T phase diagram

31/36

Theories: At larger B, Dissociation of Chiral condensates & De-confinement happen at larger Tc

Origins of contradictions ?

Most Theories predict : $\langle \bar{\psi}\psi \rangle_{2D} \sim |eB|^{1/2}$

(NJL model or QED like calculations)

Then Tc behaves like : $Tc \sim |eB|^{1/2}$

(|eB|^{1/2} condensate does not easily dissociate)

Instead we need :

Then Tc behaves like : Tc ~ Λ_{QCD}

(We have better chance to explain reduction of Tc)

Instead of solving this highly nonlinear problem,

we suggest the regime:

and consider large Nc value of the quark mass gap.

It should be regarded as the **upper bound**:

1/Nc corrections just **reduce the gap**.

(gluon screening, hadronic fluctuations)

(Fukushima-Pawlowski 12, Fukushima-Hidaka 12)

Problem : all the self-interactions have equal strength G. $\langle \bar{\psi}\psi \rangle^B_{\mathrm{NJL}} \simeq -\frac{1}{G} M_{\mathrm{NJL}}(B)$ same B-dep.

14/25

Gap eq. (QCD, T=0)

Key features : strong in IR & weak in UV

The Gap eq. does **NOT** pick up the factor **|eB|**.

(modulo weak coupling corrections)

The Gap is solely determined by the scale Λ_{QCD} .

B - **T** phase diagram ?

(see also Fraga-Noronha-Palhares 12)

19/25

3, Dim. reduction of a confining model (*as an explicit example*)

within the regime :

 $\Lambda_{QCD} << |eB|^{1/2} << N_c^{1/2} \Lambda_{QCD}$

Schwinger-Dyson eq. for the LLL

$$\Sigma(p) = \int \frac{d^4q}{(2\pi)^4} \gamma_4 S(q; \Sigma) \gamma_4 D_{44}(p-q)$$

$$p = q$$
quarks in LLL : P_T - independent
factorization
$$\Sigma_{2D}(p_L) = \int \frac{d^2q_L}{(2\pi)^4} \gamma_4 S_{2D}(q_L; \Sigma_{2D}) \gamma_4 \otimes \int \frac{d^2q_\perp}{(2\pi)^2} D_{44}(p-q)$$

2D conf. gluon propagator

21/25

B does not appear : self-energies are functions of Λ_{QCD}

Bethe-Salpeter eq. for the LLLs

Consider meson currents for which both quark & anti-quark can couple to the LLL states. (Some currents CAN NOT, see next slide.) $\bar{\psi}\Gamma\psi$

Dim. reduction can be carried out in the same way :

Both total & relative momenta are indep. of trans. momenta.

• Quark & anti-quark **align** in the z-direction.

23/25 Classifications of Mesons (2-flavor case)

Expanding quark fields by the Landau levels: $\psi^f = \psi^f_{
m LLL} + \sum_{n=1} \psi^f_n$ we can pick out currents $\ \bar{\psi}\Gamma\psi$ for which

both quark & anti-quark can decay to the LLL.

List of light mesons:

charged

neutral

 $egin{aligned} (uar{u}\,,dar{d})\otimes(1\,,\gamma_5\,,\gamma_L\,,\gamma_L\gamma_5\,,\sigma_{LL'}\,,\sigma_{\perp\perp'})\ (uar{d}\,,dar{u})\otimes(\gamma_{\perp}\,,\gamma_{\perp}\gamma_5\,,\sigma_{L\perp}) \end{aligned}$

- e.g.)
- Neutral pion (charged pions do NOT).
- Neutral, longitudinal part of vector mesons.
- Charged, transverse part of vector mesons.

(seems to be consistent with known lattice results.)

Implications for dense QCD ?

Similar modulo Fermi surface curvature

Excitations (physical pion spectra) ground state properties (No pion spectra)

Quasi-long range order & large Nc

But this does not mean the system is in the usual symmetric phase!

Non-Local order parameters:

$$\langle \bar{\Psi}_+ \Psi_-(x) \bar{\Psi}_- \Psi_+(0) \rangle \sim$$

(including disconnected pieces)

$$e^{-m|x|}$$
 : symmetric phase
 $\langle \bar{\Psi}_+ \Psi_- \rangle^2$: long range order
 $|x|^{-C/N_{\rm c}}$: quasi-long
(power law) range order

Lattice Results (Bali et al. 11, 12)

 As far as color-singlet sector is concerned, we can get the same results even if we drop off div. const. (principal value IR regulation; e.g., Coleman, Aspects of Symmetry)

- •S-D eqs. \rightarrow just sub-diagrams in B-S eqs.
- Div. of poles will be used as color selection rules at best. (Actually div. of poles may not be necessary condition: Callan-Coote-Gross76)

Model & consequences

Magnetic fields in Nature: 1 Earth (surface) ~ 10⁻⁶ T

motion of charged fluids

magnetic fields

Magnetic fields in Nature: 2 Compact stars (surface) ~ 10⁸ - 10¹¹ T earth's x (10¹⁴ - 10¹⁷)

charged fluids move very fast

Very Large magnetic fields

