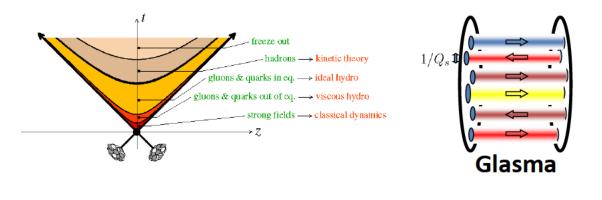
Quark production in glasma

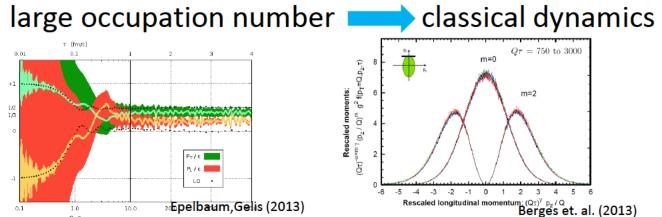
Naoto Tanji KEK

collaboration with F. Gelis

Introduction

The time-evolution of Glasma toward isotropization and thermalization





Classical statistical simulations of gluodynamics

Quark production is also important!

Quark production

CGC, glasma

purely gluonic matter

How does the system reaches chemical equilibrium between light quarks and gluons?

Earlier works by F. Gelis, K. Kajantie and T. Lappi

PRC71, 024904(2005) PRL96, 032304(2006)

- Limitation from numerical costs
- Treatment of the boost-invariance

There have been theoretical and technical advances on

- > classical statistical method for over-occupied bosonic fields
- > real-time lattice simulations of fermionic fields
- > treatment of a boost-invariant system

Derivation of the classical statistical method

- a) Diagrammatically sum up unstable modes.

 Francois's talk
- b) From the Schwinger-Keldysh path-integral formalism.

S. Jeon, PRC72, 014907 (2005); arXiv:1308.0263.

Compute $\langle 0_{\rm in} | \mathcal{O} | 0_{\rm in} \rangle$

the Schwinger-Keldysh (CTP) formalism

- lacktriangledge ϕ^4 -scalar theory as an example
 - Generating functional

$$Z[J_{+}, J_{-}] = \int \left[d\phi_{+}^{i} d\phi_{-}^{i} \right] \rho[\phi_{+}^{i}, \phi_{-}^{i}] \int \mathcal{D}\phi_{+} \mathcal{D}\phi_{-} e^{i \int d^{4}x \left[\mathcal{L}_{SK} + J_{+} \phi_{+} - J_{-} \phi_{-}\right]}$$

density matrix

SK Lagrangian

$$\mathcal{L}_{SK} = \mathcal{L}[\phi_{+}] - \mathcal{L}[\phi_{-}]$$

$$= \left(\frac{1}{2}\partial_{\mu}\phi_{+}\partial^{\mu}\phi_{+} - \frac{1}{2}m^{2}\phi_{+}^{2} - \frac{\lambda}{4!}\phi_{+}^{4}\right) - \left(\frac{1}{2}\partial_{\mu}\phi_{-}\partial^{\mu}\phi_{-} - \frac{1}{2}m^{2}\phi_{-}^{2} - \frac{\lambda}{4!}\phi_{-}^{4}\right)$$

$$\phi = \frac{\phi_+ + \phi_-}{2} \quad \chi = \phi_+ - \phi_-$$

$$\mathcal{L}_{SK} = -\left(\Box \phi + m^2 \phi + \frac{\lambda}{3!} \phi^3\right) \chi - \frac{\lambda}{4!} \phi \chi^3$$

$$\phi = \frac{\phi_+ + \phi_-}{2} \quad \chi = \phi_+ - \phi_-$$

$$\mathcal{L}_{SK} = -\left(\Box \phi + m^2 \phi + \frac{\lambda}{3!} \phi^3\right) \chi - \frac{\lambda}{4!} \phi \chi^3$$
 classical field equation

$$\phi = \frac{\phi_+ + \phi_-}{2} \quad \chi = \phi_+ - \phi_-$$

$$\mathcal{L}_{SK} = -\left(\Box \phi + m^2 \phi + \frac{\lambda}{3!} \phi^3\right) \chi - \frac{\lambda}{4!} \phi \chi^3$$
 classical field equation

Classical approximation

Strong fields
$$\phi \gg \chi$$
 Neglect the term $\frac{\lambda}{4!}\phi\chi^3$

$$\phi = \frac{\phi_+ + \phi_-}{2} \quad \chi = \phi_+ - \phi_-$$

$$\mathcal{L}_{SK} = -\left(\Box \phi + m^2 \phi + \frac{\lambda}{3!} \phi^3\right) \chi - \frac{\lambda}{4!} \phi \chi^3$$
 classical field equation

Classical approximation

Strong fields
$$\phi \gg \chi$$
 Neglect the term $\frac{\lambda}{4!}\phi\chi^3$

The path integration over χ can be executed.

$$\int \mathcal{D}\phi \mathcal{D}\chi e^{i\int d^4x \left[\mathcal{L}_{SK} + J_\chi \phi + J_\phi \chi\right]} = \int \mathcal{D}\phi e^{i\int d^4x J_\chi \phi} \delta \left(\Box \phi + m^2 \phi + \frac{\lambda}{3!} \phi^3 + J_\phi\right)$$

$$\phi = \frac{\phi_+ + \phi_-}{2} \quad \chi = \phi_+ - \phi_-$$

$$\mathcal{L}_{SK} = -\left(\Box \phi + m^2 \phi + \frac{\lambda}{3!} \phi^3\right) \chi - \frac{\lambda}{4!} \phi \chi^3$$
 classical field equation

Classical approximation

Strong fields
$$\phi \gg \chi$$
 Neglect the term $\frac{\lambda}{4!}\phi\chi^3$

The path integration over χ can be executed.

$$\int \mathcal{D}\phi \mathcal{D}\chi e^{i\int d^4x \left[\mathcal{L}_{SK} + J_\chi \phi + J_\phi \chi\right]} = \int \mathcal{D}\phi e^{i\int d^4x J_\chi \phi} \delta\left(\Box \phi + m^2 \phi + \frac{\lambda}{3!} \phi^3 + J_\phi\right)$$

The delta function constraints the field trajectory to the classical path.

> The Wigner transform of the density matrix

$$W[\phi^{i}, \dot{\phi}^{i}] = \int [d\chi^{i}] e^{i \int d^{3}x \dot{\phi}^{i} \chi^{i}} \rho[\phi^{i} + \chi^{i}/2, \phi^{i} - \chi^{i}/2]$$

Perturbative vacuum

Gaussian distribution

$$W[\phi^i, \dot{\phi}^i] = \exp\left(-\int \frac{d^3k}{(2\pi)^3 \omega_k} \left[\omega_k^2 \phi^i(\mathbf{k}) \phi^i(-\mathbf{k}) + \pi^i(\mathbf{k}) \pi^i(-\mathbf{k})\right]\right)$$

The Wigner transform of the density matrix

$$W[\phi^{i}, \dot{\phi}^{i}] = \int [d\chi^{i}] e^{i \int d^{3}x \dot{\phi}^{i} \chi^{i}} \rho[\phi^{i} + \chi^{i}/2, \phi^{i} - \chi^{i}/2]$$

Perturbative vacuum Gaussian distribution

$$W[\phi^i, \dot{\phi}^i] = \exp\left(-\int \frac{d^3k}{(2\pi)^3 \omega_k} \left[\omega_k^2 \phi^i(\mathbf{k}) \phi^i(-\mathbf{k}) + \pi^i(\mathbf{k}) \pi^i(-\mathbf{k})\right]\right)$$

Finally,

$$Z_{\text{class}}[J_{\phi}, J_{\chi}] = \int [d\phi^{i} d\dot{\phi}^{i}] W[\phi^{i}, \dot{\phi}^{i}] \int \mathcal{D}\phi e^{i \int d^{4}x J_{\chi} \phi} \delta \left(\Box \phi + m^{2} \phi + \frac{\lambda}{3!} \phi^{3} + J_{\phi}\right)$$

- 1. Generate an ensemble of initial values according to the Wigner distribution.
- 2. Solve the classical equation for each initial conditions.
- 3. Take the ensemble average.

Quantum effects are incorporated only through the initial condition. But the initial vacuum fluctuations contain rich physics.

■ gauge part

$$A^{\mu} = \frac{A_{+}^{\mu} + A_{-}^{\mu}}{2} \quad \eta^{\mu} = A_{+}^{\mu} - A_{-}^{\mu}$$

$$\mathcal{L}_{\text{gauge}}^{\text{SK}} = ([D_{\mu}, F^{\mu\nu}] - J_{\text{ext}}^{\nu})^{a} \eta_{\nu}^{a} + \frac{ig}{4} [D_{\mu}, \eta_{\mu}]^{a} [\eta^{\mu}, \eta^{\nu}]^{a}$$

■ gauge part

$$A^{\mu} = \frac{A^{\mu}_{+} + A^{\mu}_{-}}{2} \quad \eta^{\mu} = A^{\mu}_{+} - A^{\mu}_{-}$$

$$\mathcal{L}^{\rm SK}_{\rm gauge} = \left(\left[D_{\mu}, F^{\mu\nu} \right] - J^{\nu}_{\rm ext} \right)^{a} \eta^{a}_{\nu} + \frac{ig}{4} [D_{\mu}, \eta_{\mu}]^{a} [\eta^{\mu}, \eta^{\nu}]^{a}$$
 non-Abelian Maxwell eq.

■ gauge part

$$A^{\mu} = \frac{A^{\mu}_{+} + A^{\mu}_{-}}{2} \quad \eta^{\mu} = A^{\mu}_{+} - A^{\mu}_{-}$$

$$\mathcal{L}^{\rm SK}_{\rm gauge} = \left([D_{\mu}, F^{\mu\nu}] - J^{\nu}_{\rm ext} \right)^{a} \eta^{a}_{\nu} + \frac{ig}{4} [D_{\mu}, \eta_{\mu}]^{a} [\eta^{\mu}, \eta^{\nu}]^{a}$$
 non-Abelian Maxwell eq.

quark part

Fermion's occupation number ≤ 1 Fermions are always quantum.

$$\mathcal{L}_{\text{matter}} = \bar{\psi} \left(i \gamma^{\mu} D_{\mu} - m \right) \psi$$

$$D_{\mu} = \partial_{\mu} + i g A_{\mu}$$

■ gauge part

$$A^{\mu} = \frac{A^{\mu}_{+} + A^{\mu}_{-}}{2} \quad \eta^{\mu} = A^{\mu}_{+} - A^{\mu}_{-}$$

$$\mathcal{L}^{\rm SK}_{\rm gauge} = \left([D_{\mu}, F^{\mu\nu}] - J^{\nu}_{\rm ext} \right)^{a} \eta^{a}_{\nu} + \frac{ig}{4} [D_{\mu}, \eta_{\mu}]^{a} [\eta^{\mu}, \eta^{\nu}]^{a}$$
 non-Abelian Maxwell eq.

quark part

Fermion's occupation number ≤ 1 Fermions are always quantum.

$$\mathcal{L}_{\mathrm{matter}} = \bar{\psi} \, (i \gamma^{\mu} D_{\mu} - m) \psi$$
 Quadratic fields can be integrated out.

$$\int \mathcal{D}[\bar{\psi}_{+}, \bar{\psi}_{-}, \psi_{+}, \psi_{-}] e^{i \int d^{4}x \mathcal{L}_{\text{matter}}^{SK}} = \text{Det}\left[i(S_{\text{F}}^{+})^{-1}\right] \text{Det}\left[i(S_{\text{F}}^{-})^{-1}\right]$$

 $S^+_{
m F}(x,y)$: time-ordered propagator dressed by the gauge field $\,A_+\,$

 $S^-_{{
m F}st}(x,y)$: anti-time-ordered propagator dressed by the gauge field A_-

ightharpoonup Expand the Dirac determinants w.r.t. η^{μ}

Det
$$[i(S_{F}^{+})^{-1}]$$
 Det $[i(S_{F}^{-})^{-1}]$
= Det $[i(S_{F})^{-1}]$ Det $[i(S_{F}^{*})^{-1}]$ $e^{-i\frac{g}{2}\text{Tr}[(S_{F}+S_{F*})\gamma_{\mu}]\eta^{\mu}+\mathcal{O}(\eta^{2})}$

Propagator dressed by the averaged gauge field A^{μ}

 \blacktriangleright Expand the Dirac determinants w.r.t. η^{μ}

$$\operatorname{Det}\left[i(S_{F}^{+})^{-1}\right]\operatorname{Det}\left[i(S_{F}^{-})^{-1}\right]$$

$$=\operatorname{Det}\left[i(S_{F})^{-1}\right]\operatorname{Det}\left[i(S_{F}^{*})^{-1}\right]e^{-i\frac{g}{2}\operatorname{Tr}\left[(S_{F}+S_{F*})\gamma_{\mu}\right]\eta^{\mu}+\mathcal{O}(\eta^{2})}$$

Propagator dressed by the averaged gauge field A^{μ}

 \blacktriangleright Integrate over η^{μ}

Maxwell equation which couples to the quark current

$$[D_{\mu}, F^{\mu\nu}] = J^{\nu}_{\text{ext}} + J^{\nu}_{\text{quark}}$$

$$J_{\text{quark}}^{\nu}(x) = i\frac{g}{2} \text{Tr}[(S_{\text{F}} + S_{\text{F*}})\gamma^{\nu}]$$

 \blacktriangleright Expand the Dirac determinants w.r.t. η^{μ}

$$\operatorname{Det}\left[i(S_{F}^{+})^{-1}\right]\operatorname{Det}\left[i(S_{F}^{-})^{-1}\right]$$

$$=\operatorname{Det}\left[i(S_{F})^{-1}\right]\operatorname{Det}\left[i(S_{F}^{*})^{-1}\right]e^{-i\frac{g}{2}\operatorname{Tr}\left[\left(S_{F}+S_{F*}\right)\gamma_{\mu}\right]\eta^{\mu}+\mathcal{O}(\eta^{2})}$$

Propagator dressed by the averaged gauge field A^{μ}

 \blacktriangleright Integrate over η^{μ}

Maxwell equation which couples to the quark current

$$[D_{\mu}, F^{\mu\nu}] = J^{\nu}_{\text{ext}} + J^{\nu}_{\text{quark}}$$

$$J_{\text{quark}}^{\nu}(x) = i\frac{g}{2} \text{Tr}[(S_{\text{F}} + S_{\text{F*}})\gamma^{\nu}]$$
$$= \frac{g}{2} \langle 0_{\text{in}} | \left[\hat{\bar{\psi}}(x), \gamma^{\nu} \hat{\psi}(x) \right] | 0_{\text{in}} \rangle$$

 $\hat{\psi}(x)$ is a field operator satisfying the Dirac equation under the gauge field:

$$[i\gamma^{\mu}(\partial_{\mu} + igA_{\mu}) - m]\,\hat{\psi}(x) = 0$$

1. Generate an ensemble of the initial gauge fields according to the Wigner function

$$A^{\mu}(t_0,\mathbf{x}) = A^{\mu}_{\mathrm{coherent}}(t_0,\mathbf{x}) + \sum_n \left[a^{\mu}_n(t_0,\mathbf{x}) c_n + a^{\mu}_n{}^*(t_0,\mathbf{x}) c_n^* \right]$$
 Gaussian random number $\langle c_n c^*_{n'} \rangle_{\mathrm{ens}} = \frac{1}{2} \delta_{n,n'}$

For each gauge configuration, solve the Maxwell equation and the Dirac equation as associated equations

$$[D_{\mu}, F^{\mu\nu}] = J^{\nu}_{\text{ext}} + J^{\nu}_{\text{quark}}$$
$$[i\gamma^{\mu}(\partial_{\mu} + igA_{\mu}) - m] \hat{\psi}(x) = 0$$

3. Take the ensemble average and the expectation values

$$\langle \mathcal{O}(A) \rangle_{\text{ens}} \quad \langle 0_{\text{in}} | \hat{\mathcal{O}}(\psi) | 0_{\text{in}} \rangle$$

1. Generate an ensemble of the initial gauge fields according to the Wigner function

$$A^{\mu}(t_0, \mathbf{x}) = A^{\mu}_{\text{coherent}}(t_0, \mathbf{x}) + \sum_{n} \left[a^{\mu}_n(t_0, \mathbf{x}) c_n + a^{\mu*}_n(t_0, \mathbf{x}) c_n^* \right]$$

pure classical approximation for gauge fields as a first step

2. For each gauge configuration, solve the Maxwell equation and the Dirac equation as associated equations

$$[D_{\mu}, F^{\mu\nu}] = J^{\nu}_{\text{ext}} + J^{\nu}_{\text{quark}}$$
$$[i\gamma^{\mu}(\partial_{\mu} + igA_{\mu}) - m] \,\hat{\psi}(x) = 0$$

3. Take the ensemble average and the expectation values

$$\mathcal{O}(A)$$
 $\langle 0_{\rm in} | \hat{\mathcal{O}}(\psi) | 0_{\rm in} \rangle$

Computing fermion contributions

■ Mode functions approach Aarts, Smit 1998

$$\left[i\gamma^{\mu}(\partial_{\mu}+igA_{\mu})-m\right]\hat{\psi}(x)=0 \qquad \text{ linear in the Dirac field }$$

$$\hat{\psi}(x)=\sum_{s}\int d^{3}p\left[\psi_{\mathbf{p},s}^{+}(x)a_{\mathbf{p},s}+\psi_{\mathbf{p},s}^{-}(x)b_{\mathbf{p},s}^{\dagger}\right]$$

 $\psi^{\pm}_{{f p},s}(x)$: mode functions, c-number solutions of the Dirac eq.

$$\left[i\gamma^{\mu}(\partial_{\mu} + igA_{\mu}) - m\right]\psi_{\mathbf{p},s}^{\pm}(x) = 0 \qquad \lim_{t \to -\infty} \psi_{\mathbf{p},s}^{\pm}(x) = \psi_{\mathbf{p},s}^{\text{free},\pm}(x)$$

$$J_{\text{quark}}^{\mu} = \frac{g}{2} \langle 0 | \left[\hat{\bar{\psi}}(x), \gamma^{\mu} \hat{\psi}(x) \right] | 0 \rangle$$

$$= -\frac{g}{2} \sum_{s} \int d^{3}p \left\{ \bar{\psi}_{\mathbf{p},s}^{+}(x) \gamma^{\mu} \psi_{\mathbf{p},s}^{+}(x) - \bar{\psi}_{\mathbf{p},s}^{-}(x) \gamma^{\mu} \psi_{\mathbf{p},s}^{-}(x) \right\}$$

With the c-number mode functions, expectation values can be computed.

Computing fermion contributions

■ Mode functions approach

Aarts, Smit 1998

$$\left[i\gamma^{\mu}(\partial_{\mu}+igA_{\mu})-m\right]\hat{\psi}(x)=0 \qquad \text{ linear in the Dirac field }$$

$$\hat{\psi}(x)=\sum_{s}\int\!d^{3}p\left[\psi_{\mathbf{p},s}^{+}(x)a_{\mathbf{p},s}+\psi_{\mathbf{p},s}^{-}(x)b_{\mathbf{p},s}^{\dagger}\right]$$

 $\psi_{\mathbf{p},s}^{\pm}(x)$: mode functions, c-number solutions of the Dirac eq.

$$[i\gamma^{\mu}(\partial_{\mu} + igA_{\mu}) - m] \psi_{\mathbf{p},s}^{\pm}(x) = 0 \qquad \lim_{t \to -\infty} \psi_{\mathbf{p},s}^{\pm}(x) = \psi_{\mathbf{p},s}^{\text{free},\pm}(x)$$

$$\begin{split} J_{\rm quark}^{\mu} &= \frac{g}{2} \langle 0 | \left[\hat{\bar{\psi}}(x), \gamma^{\mu} \hat{\psi}(x) \right] & \text{Numerical cost} \\ &= -\frac{g}{2} \sum_{s} \int \! d^3p \, \{ \bar{\psi}_{\mathbf{p},s}^+(x) & \text{expensive in 3+1dim.} \end{split}$$

With the c-number mode functions, expectation values can be computed.

■ Monte Carlo method with male and female stochastic fields

- Male and female fields

 Borsanyi, Hindmarsh 2009
 - initial condition

$$\psi_{\mathrm{M}}(t_0, \mathbf{x}) = \sum_{s} \int d^3p \left[\psi_{\mathbf{p}, s}^+(t_0, \mathbf{x}) c_{\mathbf{p}, s} + \psi_{\mathbf{p}, s}^-(t_0, \mathbf{x}) d_{\mathbf{p}, s} \right]$$

$$\psi_{\mathrm{F}}(t_0, \mathbf{x}) = \sum_{s} \int d^3p \left[\psi_{\mathbf{p}, s}^+(t_0, \mathbf{x}) c_{\mathbf{p}, s} - \psi_{\mathbf{p}, s}^-(t_0, \mathbf{x}) d_{\mathbf{p}, s} \right]$$

evolution equation

$$[i\gamma^{\mu}(\partial_{\mu} + igA_{\mu}) - m] \psi_{M,F}(x) = 0$$

Gaussian random numbers

$$\langle c_{\mathbf{p},s} c_{\mathbf{p}',s'}^* \rangle = \langle d_{\mathbf{p},s} d_{\mathbf{p}',s'}^* \rangle = \frac{1}{2} \delta_{s,s'} \delta^3(\mathbf{p} - \mathbf{p}')$$

The expectation value can be reproduced by male-female ensemble average.

$$-g\langle \bar{\psi}_{\mathrm{M}}(x)\gamma^{\mu}\psi_{\mathrm{F}}\rangle = -\frac{g}{2}\sum_{s}\int d^{3}p\left\{\bar{\psi}_{\mathbf{p},s}^{+}(x)\gamma^{\mu}\psi_{\mathbf{p},s}^{+}(x) - \bar{\psi}_{\mathbf{p},s}^{-}(x)\gamma^{\mu}\psi_{\mathbf{p},s}^{-}(x)\right\}$$
$$= J_{\mathrm{quark}}^{\mu}$$

Monte Carlo method with male and female stochastic fields

- Male and female fields
- Borsanyi, Hindmarsh 2009
 - initial condition

$$\psi_{\mathrm{M}}(t_0, \mathbf{x}) = \sum_{s} \int d^3p \left[\psi_{\mathbf{p}, s}^+(t_0, \mathbf{x}) c_{\mathbf{p}, s} + \psi_{\mathbf{p}, s}^-(t_0, \mathbf{x}) d_{\mathbf{p}, s} \right]$$

$$\psi_{\mathrm{F}}(t_0, \mathbf{x}) = \sum_{s} \int d^3p \left[\psi_{\mathbf{p}, s}^+(t_0, \mathbf{x}) c_{\mathbf{p}, s} - \psi_{\mathbf{p}, s}^-(t_0, \mathbf{x}) d_{\mathbf{p}, s} \right]$$

evolution equation

$$[i\gamma^{\mu}(\partial_{\mu} + igA_{\mu}) - m] \psi_{\mathrm{M,F}}(x) = 0$$

Gaussian random numbers

$$\langle c_{\mathbf{p},s} c_{\mathbf{p}',s'}^* \rangle = \langle d_{\mathbf{p},s} d_{\mathbf{p}',s'}^* \rangle = \frac{1}{2} \delta_{s,s'} \delta^3(\mathbf{p} - \mathbf{p}')$$

The expectation value can be reproduced by male-female ensemble average.

$$-g\langle\bar{\psi}_{\mathrm{M}}(x)\gamma^{\mu}\psi_{\mathrm{F}}\rangle = -\frac{g}{2}\sum_{s}\int\!d^{3}p\left\{\bar{\psi}_{\mathbf{p},s}^{+}(x)\gamma^{\mu}\psi_{\mathbf{p},s}^{+}(x) - \bar{\psi}_{\mathbf{p},s}^{-}(x)\gamma^{\mu}\psi_{\mathbf{p},s}^{-}(x)\right\}$$

$$= J_{\mathrm{quark}}^{\mu} \qquad \qquad \text{The male-female combination is necessary}$$

The male-female combination is necessary to get this minus sign which originates in anti-commutativity.

Monte Carlo method with male and female stochastic fields

Male and female fields

Borsanyi, Hindmarsh 2009

initial condition

$$\psi_{\mathrm{M}}(t_0, \mathbf{x}) = \sum_{s} \int d^3p \left[\psi_{\mathbf{p}, s}^+(t_0, \mathbf{x}) c_{\mathbf{p}, s} + \psi_{\mathbf{p}, s}^-(t_0, \mathbf{x}) d_{\mathbf{p}, s} \right]$$

$$\psi_{\mathbf{F}}(t_0,\mathbf{x}) = \sum_s \int d^3p \left[\psi^+_{\mathbf{p},s}(t_0,\mathbf{x}) c_{\mathbf{p},s} - \psi^-_{\mathbf{p},s} \right] \begin{array}{c} \text{Numerical cost} \\ N_{\text{config}} \times N_{\text{latt}}^2 \end{array}$$

evolution equation

$$[i\gamma^{\mu}(\partial_{\mu} + igA_{\mu}) - m] \psi_{M,F}(x) = 0$$

Gaussian random numbers

n random numbers
$$\langle c_{\mathbf{p},s}c_{\mathbf{p}',s'}^*\rangle = \langle d_{\mathbf{p},s}d_{\mathbf{p}',s'}^*\rangle = \frac{1}{2}\delta_{s,s'}\delta^3 (\mathbf{p}-\mathbf{p})$$

The expectation value can be reproduced by male-female ensemble average.

$$-g\langle \bar{\psi}_{\mathrm{M}} | N_{\mathrm{config}} \times N_{\mathrm{latt}} \times (N_{\mathrm{latt}} + N_{t}) \ll N_{t} \times N_{\mathrm{latt}}^{2}$$

 $\psi_{\mathbf{p},s}^{-}(x)$

if $N_{
m config} \ll N_{
m latt}$ and $N_{
m config} \ll N_t$

necessarv

to get this minus sign which originates in anti-commutativity.

Particle distribution function

- Particle definition is ambiguous in a background field or with interactions.
- But, it is informative to get physical insight on microscopic reactions.
- With some quasi-particle definition, momentum distribution can be computed.

$$f(\mathbf{p}, s) \equiv \langle 0_{\rm in} | a_{\mathbf{p}, s}^{\dagger}(t) a_{\mathbf{p}, s}(t) | 0_{\rm in} \rangle \frac{(2\pi)^3}{V}$$

$$= \frac{1}{2\omega_p V} \sum_{s'} \int d^3 p' \int d^3 x \int d^3 y \, \psi_{\mathbf{p'}, s'}^{-\dagger}(t, \mathbf{x}) e^{i(\mathbf{p} + g\mathbf{A}) \cdot \mathbf{x}} u(\mathbf{p}, s) u^{\dagger}(\mathbf{p}, s) e^{-i(\mathbf{p} + g\mathbf{A}) \cdot \mathbf{y}} \psi_{\mathbf{p'}, s'}^{-}(t, \mathbf{y})$$

valid only if the gauge potential is uniform

Another way is to introduce the Wigner distribution func. e.g. Hebenstreit, Berges (2013)

Particle distribution function

- Particle definition is ambiguous in a background field or with interactions.
- But, it is informative to get physical insight on microscopic reactions.
- With some quasi-particle definition, momentum distribution can be computed.

$$f(\mathbf{p}, s) \equiv \langle 0_{\rm in} | a_{\mathbf{p}, s}^{\dagger}(t) a_{\mathbf{p}, s}(t) | 0_{\rm in} \rangle \frac{(2\pi)^3}{V}$$

$$= \frac{1}{2\omega_p V} \sum_{s'} \int d^3 p' \int d^3 x \int d^3 y \, \psi_{\mathbf{p'}, s'}^{-\dagger}(t, \mathbf{x}) e^{i(\mathbf{p} + g\mathbf{A}) \cdot \mathbf{x}} u(\mathbf{p}, s) u^{\dagger}(\mathbf{p}, s) e^{-i(\mathbf{p} + g\mathbf{A}) \cdot \mathbf{y}} \psi_{\mathbf{p'}, s'}^{-}(t, \mathbf{y})$$

valid only if the gauge potential is uniform

Another way is to introduce the Wigner distribution func. e.g. Hebenstreit, Berges (2013)

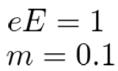
the MC method

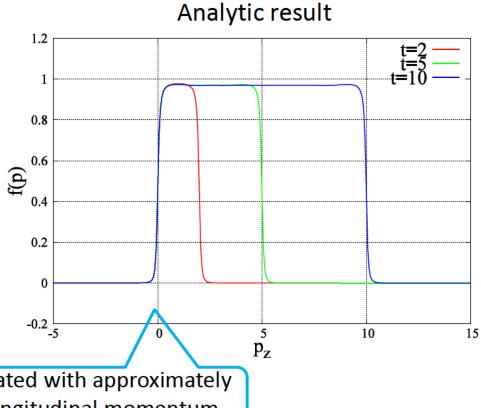
$$= -\frac{1}{2\omega_p V} \int d^3x \int d^3y \, \langle \psi_{\scriptscriptstyle \mathrm{M}}^\dagger(t,\mathbf{x}) e^{i(\mathbf{p}+g\mathbf{A})\cdot\mathbf{x}} u(\mathbf{p},s) u^\dagger(\mathbf{p},s) e^{-i(\mathbf{p}+g\mathbf{A})\cdot\mathbf{y}} \psi_{\scriptscriptstyle \mathrm{F}}(t,\mathbf{y}) \rangle + \frac{1}{2}$$

Benchmark --- QED uniform and constant electric field

Schwinger mechanism particle pair production

NT, Ann. Phys. 324(2009)



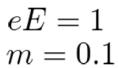


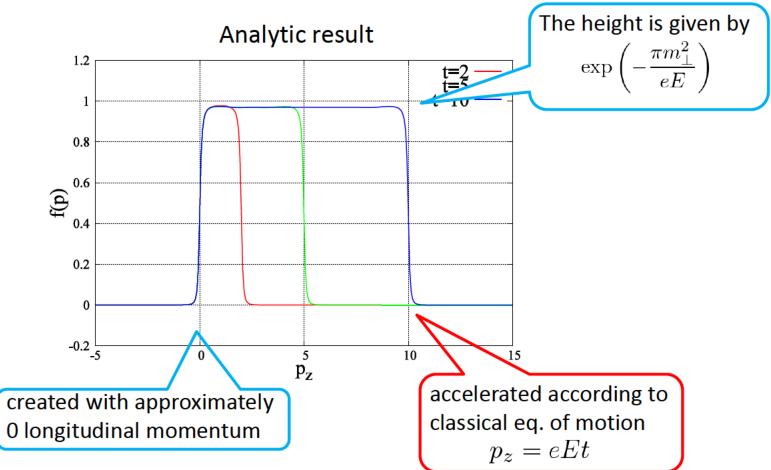
created with approximately 0 longitudinal momentum

Benchmark --- QED uniform and constant electric field

Schwinger mechanism particle pair production

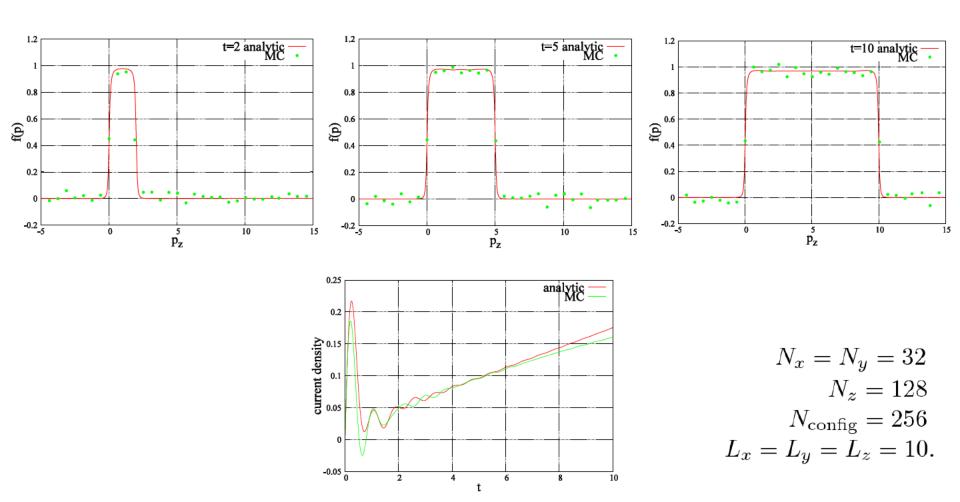
NT, Ann. Phys. 324(2009)





Benchmark --- QED uniform and constant electric field

Comparison between the analytic and MC results

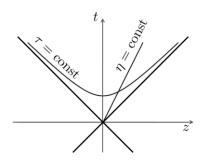


The MC method well reproduces the analytic results.

Boost-invariant expansion

lacksquare QFT in the au- η coordinate system

u : momentum conjugate to space-time rapidity $\,\eta$

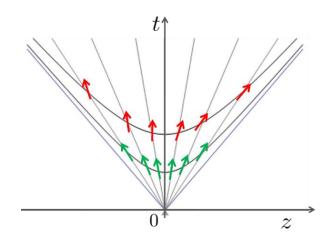


 \succ The relation between the particle mode having the quantum number u and $\,p_z$.

$$a_{\mathbf{p}_{\perp},\nu} = \frac{1}{\sqrt{2\pi}} \int \frac{dp_z}{\sqrt{\omega_p}} e^{-i\nu y_p} a_{\mathbf{p}}$$

NT. PRD83 (2011) 045011

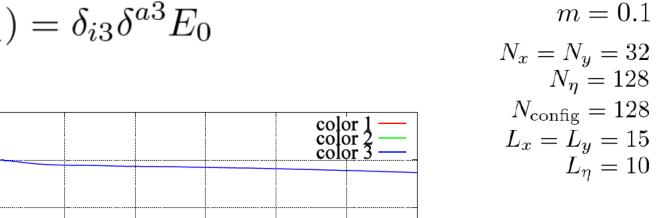
 $\dfrac{
u}{z}$: momentum observed in a frame moving with the velocity $v_z=z/t=\tanh\eta$



Uniform electric field in the z and the color 3 direction

$$E_i^a(\tau = 0^+, \vec{x}_\perp) = \delta_{i3}\delta^{a3}E_0$$

1.2





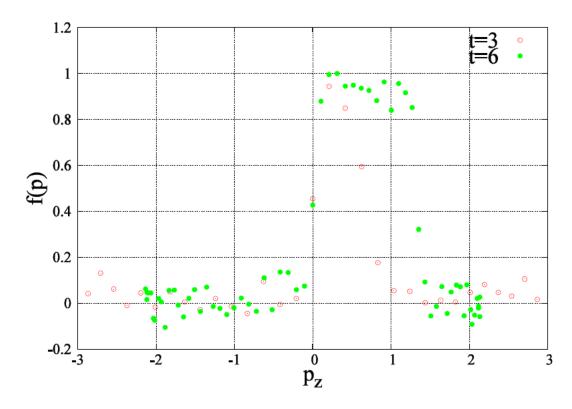
scaled by gE_0

g=1

Time-evolution of the field strength

Uniform electric field in the z and the color 3 direction

$$E_i^a(\tau = 0^+, \vec{x}_\perp) = \delta_{i3}\delta^{a3}E_0$$



$$g = 1$$

$$m = 0.1$$

$$N_x = N_y = 32$$

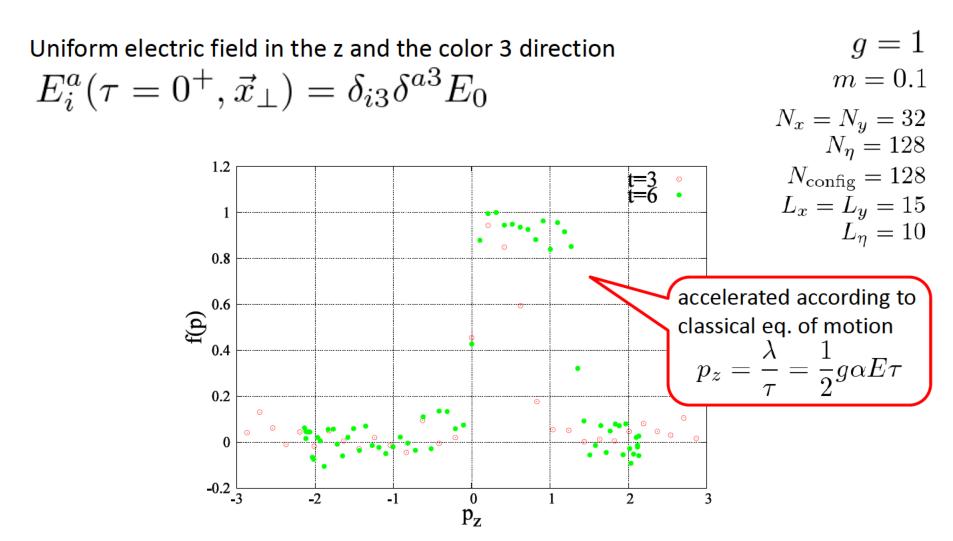
$$N_{\eta} = 128$$

$$N_{\text{config}} = 128$$

$$L_x = L_y = 15$$

$$L_{\eta} = 10$$

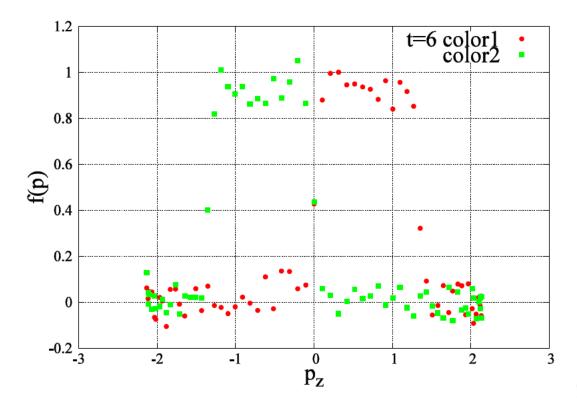
The longitudinal momentum distribution of "blue" quarks



The longitudinal momentum distribution of "blue" quarks

Uniform electric field in the z and the color 3 direction

$$E_i^a(\tau = 0^+, \vec{x}_\perp) = \delta_{i3}\delta^{a3}E_0$$



$$g = 1$$

$$m = 0.1$$

$$N_x = N_y = 32$$

$$N_{\eta} = 128$$

$$N_{\text{config}} = 128$$

$$L_x = L_y = 15$$

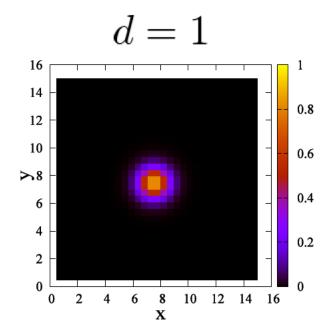
$$L_{\eta} = 10$$

$$T^3 = \begin{pmatrix} 1/2 & 0\\ 0 & -1/2 \end{pmatrix}$$

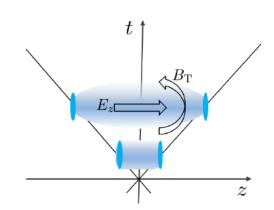
SU(2) expanding gauge fields – a flux tube

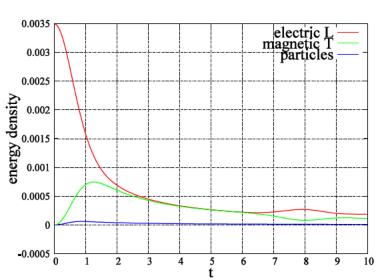
$$E_i^a(\tau = 0^+, \vec{x}_\perp) = \delta_{i3}\delta^{a3}E_0(x_\perp)$$

 $E_0(x_\perp) = E_0e^{-(x_\perp/d)^2}$



Initial field configuration





The time-evolution of energy density

SU(2) expanding gauge fields – a flux tube

$$E_{i}^{a}(\tau = 0^{+}, \vec{x}_{\perp}) = \delta_{i3}\delta^{a3}E_{0}(x_{\perp})$$

$$E_{0}(x_{\perp}) = E_{0}e^{-(x_{\perp}/d)^{2}}$$

$$d = 1$$

$$0.5$$

$$0.4$$

$$0.3$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.5$$

$$0.5$$

$$0.5$$

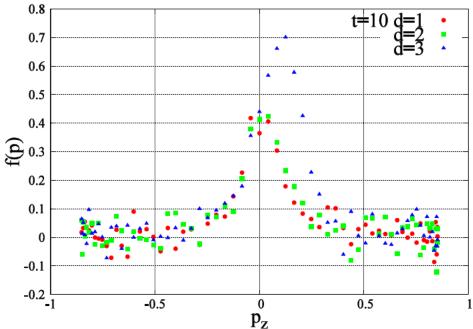
$$0.5$$

$$0.5$$

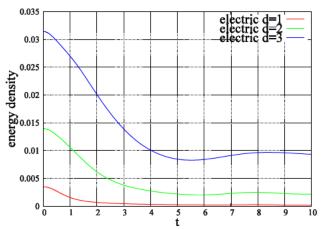
$$0.5$$

The longitudinal momentum distribution of "blue" quarks

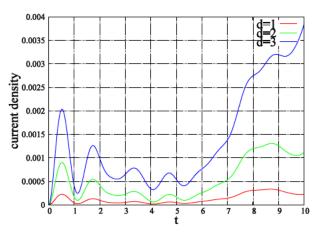
Dependence on the initial tube width



The longitudinal momentum distribution of "blue" quarks

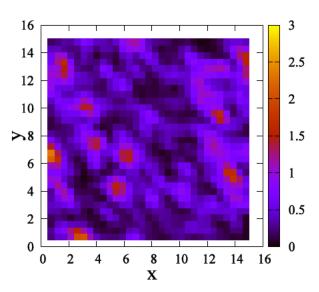


Time-evolution of the field strength

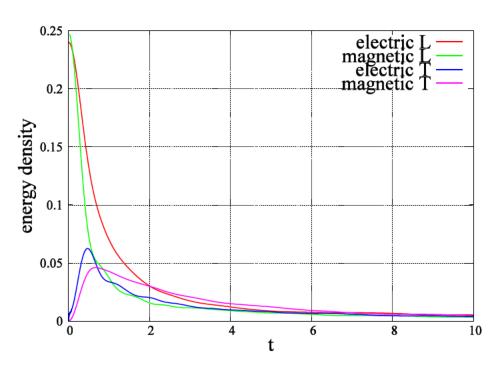


Time-evolution of the current

McLerran-Venugopalan initial condition

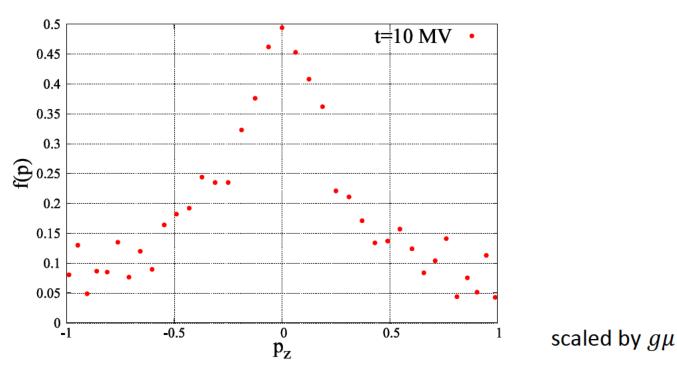


Initial electric field configuration



The time-evolution of energy density

McLerran-Venugopalan initial condition



The longitudinal momentum distribution of "blue" quarks

Summary

- Fermion dynamics can be implemented in the classical statistical method.
- ➤ The MC method reduces the numerical cost for the computations of fermion production.
- ➤ The quark production in expanding gauge fields with the MV initial condition can be computed.