

Azimuthal Jet Tomography at RHIC and LHC

Barbara Betz

in collaboration with Miklos Gyulassy

New Frontiers in QCD 2013 Yukawa Institute for Theoretical Physics, Kyoto, Japan

PRC 84, 024913 (2011); PRC 86, 024903 (2012); arXiv: 1305.6458

A Brief Reminder: Jet Tomography

Two observables:

• jet quenching: nuclear modification factor parametrizes the jet suppression

 $R_{AA}(p_T) = \frac{dN_{AA}/dp_T}{N_{coll}dN_{pp}/dp_T}$ \blacksquare number of binary collisions

• **elliptic flow**: flow induced by high-p_T particles

$$\frac{dN}{d\phi} = \frac{N}{2\pi} \left[1 + 2\sum_{n=1}^{\infty} v_n \, \cos(n\phi) \right]$$

Jets in a heavy-ion collision

2

Experimental Results

3

Overquenching @LHC

In contrast to predictions: remarkable similarity of RHIC & LHC results at $p_T > 15$ GeV

→ The jet-medium coupling @LHC seems to be smaller than @RHIC (points to a running-coupling effect consistent with pQCD).

12/10/13

4

 R_{AA}

10-

p_ (GeV/c)

Jet Quenching in pQCD vs. AdS/CFT

pQCD vs. AdS/CFT @RHIC

A. Adare et al., arXiv:1208.2254

fails at RHIC and only AdS-inspired models explain jet asymmetry

In contrast to conclusion from R. Lacey et al. R. Lacey, Phys. Rev. C 80, 051901 (2009)

Energy-Loss Mechanisms

Generic model of jet-energy loss:

$$\frac{dP}{d\tau}(\vec{x}_0,\phi,\tau) = -\kappa P^a(\tau) \tau^z T^{c=2-a+z}[\vec{x}_{\perp}(\tau),\tau,b]$$

generalized from Jia's survival model

J. Jia et al., PRC 82, 024902 (2010)

including fragmentation and examining an "averaged scenario" to study: B.Betz et al., PRC 84, 024913 (2011)

- Bullet #1: R_{AA}@RHIC & LHC (overquenching & jet-medium coupling reduction)
- Bullet #2: v₂@RHIC & LHC (transverse expansion)
- Bullet #3: path-length dependence (pQCD vs. AdS/CFT?)
- + the energy-dependence
- different initial conditions (Glauber and CGC-like)

Bullet #1: R_{AA}@RHIC & LHC overquenching and jet-medium coupling

8

Bullet #1: R_{AA} and v_2 at RHIC vs. LHC

Bullet #1: $R_{AA}(p_T)$ at LHC & RHIC

 \rightarrow Rapid rise of R_{AA}(p_T) rules out any model with dE/dx ~ E^{a>1/3}

Bullet #1: Temperature-dependent Coupling

Bullet #2: v₂@RHIC & LHC The impact of transverse expansion

Bullet #2: PHENIX Rⁱⁿ_{AA} and R^{out}_{AA}

Bullet #2: Transverse expansion

$\begin{array}{l} \text{CUJET 2.0} = \text{DGLV} (\textit{run. coupl.}) + \text{VISH2.1} (\eta/\text{s}=0.08) \\ & \text{first results} \end{array}$

$CUJET2.0 = DGLV (run. coupl.) + VISH2.1 (\eta/s=0.08)$

Barbara Betz

Bullet #2: Transverse expansion

12/10/13

NFQCD 2013, Mini-Symposium Day

Barbara Betz

Hydrodynamic Expansion

Energy-Loss Mechanisms 2.0

Calculate R_{AA}^{in} and R_{AA}^{out}/R_{AA} and v_2 @ RHIC & LHC for:

- QCDrad: $a=0, z=1, const. \kappa$
- QCDel: a=0, z=0, const. κ
- AdS: a=0, z=2 , const. κ
- SLTc: a=0, z=1, κ(T)

M. Gyulassy et al, PRL 86, 2537 (2001)

- Blast wave model: v=0.6
- C. Shen et al. , PRC 82, 054904 (2010); PRC VISH2+1 84,044903 (2011)

M. Luzum and P. Romatschke, PRC 78,

- RL Hydro 034915 (2008); [Erratum-ibid. C 79, 039903 2009)]; PRL 103, 262302 (2009).
- We asked for hydro expansions that reproduce the bulk properties. For the results used, some parameters (viscosity, ...) differ between RHIC and LHC. NFQCD 2013, Mini-Symposium Day 12/10/13 Barbara Betz

$R_{AA}^{\text{in}} \,and\, R_{AA}^{\text{out}} \,at\, RHIC$

QCDrad ~ rc CUJET1.1 AdS ~ fixed t'Hooft conformal falling string SLTc ~ temperaturedependent coupling

All scenarios based on (visc.) hydro background account for $p_T > 8$ GeV data, while blast wave model (v=0.6) fails

Qualitative difference to PHENIX results to due details of hydro simulation and jet-energy loss.

20 12/10/13

NFQCD 2013, Mini-Symposium Day

Barbara Betz

R_{AA} and v_2 at the LHC

 $dE/dx \sim E^0 \tau^1 T^3$ reproduces **BOTH** R_{AA} and v_2 within the uncertainties of bulk space time evolution (IC, η/s , τ_0)

Running coupling radiative QCDrad appears to be preferred over running coupling QCDel.

21 12/10/13 50

R_{AA} and v_2 at the LHC

Conformal AdS and the SLTc model considered for a fixed coupling overquench at the LHC.

→Conformal AdS is ruled out by the rapid rise of the R_{AA}(p_T)

Bullet #3: path-length dependence pQCD vs. *non-conformal* AdS

Bullet #3: The path-length dependence

Conformal AdS: scale cannot change, i.e. coupling cannot run.

Using conformal AdS, Horowitz et al. predicted a flat $R_{AA}(p_T)$ @LHC in constrast to measured data

Using non-standard AdS, A. Ficnar et al. found: ^{A. Ficnar et al., arXiv: 1311.6160} $dE/dx = \kappa T^2 [T_c z 0(T) + xT]^2 z 0(T)$: Initial "radial" jet-production point

leading to a temperature-dependent path-length dependence, interpolating between the above discussed cases (extremes) QCDel and AdS:

$$T_c z 0(T) \gg xT$$
 : $dE/dx = \kappa [T_c z 0(T)]^2 T^2 = \kappa_1(T) E^0 x^0 T^2$
 $T_c z 0(T) \ll xT$: $dE/dx = \kappa x^2 T^4$

R_{AA} at RHIC and LHC for *non-standard AdS*

The "surprising transparency" at LHC as compared to RHIC was also proven applying the new analytic, non-standard AdS energy-loss formula:

$$dE/dx = \kappa T^2 [T_c z 0(T) + xT]^2$$

z0(T): Initial "radial" jet-production point

R_{AA} and v_2 at the LHC for *nCF AdS*

Allowing the coupling to vary, all of the above discussed models will reproproduce the measured data (note: QCDel dE/dx~ $E^0\tau^0T^2$ is less preferred):

Only conformal AdS fails to describe the data (R_{AA} and v_2) BOTH @RHIC & LHC

Summary

Comparison of recent R_{AA} and v_2 @RHIC and @LHC with pQCD-like, AdS/CFT-inspired, and a T_c -dominated energy-loss model

Bullet #1:

The overquenching @LHC points to a moderate reduction of the running coupling.

Bullet #2:

In a (2+1)d transverse + Bjorken expanding medium, the high- $p_T v_2$ values tends to be too low in various models (Molnar, CUJET2.0, AMY, ASW, HT). However, our idealized dE^{rad}/dx~ E⁰ τ^1 T³ seems to fit best the data both @RHIC and @LHC.

Bullet #3:

While conformal AdS string-like jet holography appears to be ruled out by the LHC data, novel non-conformal generalizations of AdS string models (Ficnar et al.) may provide an alternative description.

The evolution of the bulk medium influences the jet-energy loss & **all details** of both bulk evolution and jet-energy loss **matter!**

Backup

Energy-Loss Mechanisms

R_{AA} is a ratio of jet penetrating a QGP to the initial jet spectrum

$$R_{AA}^{q,g}(P_f, \vec{x}_0, \phi) = \frac{dN_{QGP}^{jet}(P_f)}{dyd\phi dP_f^2} \Big/ \frac{dN_{vac}^{jet}(P_f)}{dyd\phi dP_0^2} = \frac{dP_0^2}{dP_f^2} \frac{dN_{vac}^{jet}[P_0(P_f)]}{dyd\phi dP_0^2} \Big/ \frac{dN_{vac}^{jet}(P_f)}{dyd\phi dP_0^2} \Big/ \frac{$$

One needs to determine the $P_0(P_f)$ from the $dP/d\tau$ ansatz

$$P_0(P_f) = \left[P_f^{1-a} + K \int_{\tau_0}^{\tau_f} \tau^z T^c [\vec{x}_{\perp}(\tau), \tau] d\tau \right]^{\frac{1}{1-a}}, \quad K = (1-a)\kappa C_2$$

Fragmentation:

$$R_{AA}^{\pi}(p_{\pi},\phi,N_{part}) = \frac{\left\langle \sum_{\alpha=q,g} \int_{z_{min}}^{1} \frac{dz}{z} d\sigma_{\alpha} \left(\frac{p_{\pi}}{z}\right) R_{AA}^{\alpha} \left(\frac{p_{\pi}}{z},\phi\right) D_{\alpha \to \pi} \left(z,\frac{p_{\pi}}{z}\right) \right\rangle_{\vec{x}_{0},N_{part}}}{\sum_{\alpha=q,g} \int_{z_{min}}^{1} \frac{dz}{z} d\sigma_{\alpha} \left(\frac{p_{\pi}}{z}\right) D_{\alpha \to \pi} \left(z,\frac{p_{\pi}}{z}\right)}$$

Elliptic Flow:
$$v_2^{\pi}(N_{part}) = \frac{\int d\phi \cos\{2\phi\} \ R_{AA}^{\pi}(N_{part},\phi)}{\int d\phi \ R_{AA}^{\pi}(N_{part},\phi)}$$

Energy-Loss Mechanisms

Having fixed $\boldsymbol{\kappa}$, the harmonics can be calculated

$$v_n(N_{part}) = \frac{\int d\phi \cos\{n \left[\phi - \psi_n\right]\} R_{AA}(\phi)}{\int d\phi R_{AA}(\phi)}$$

determining the angle with the reaction plane

$$\psi_n(t) = \frac{1}{n} \tan^{-1} \frac{\langle r \sin(n\phi) \rangle}{\langle r \cos(n\phi) \rangle}$$

and the Fourier density components are given by

$$e_n(t) = \frac{\sqrt{\langle r^2 \cos(n\phi) \rangle^2 + \langle r^2 \sin(n\phi) \rangle^2}}{\langle r^2 \rangle}$$

Reduced Jet-Medium Coupling

What is the physical meaning of a reduced coupling? pQCD: $\kappa \propto \alpha^3$

 $\alpha_{\rm LHC} = (\kappa_{\rm LHC}/\kappa_{\rm RHIC})^{1/3} \alpha_{\rm RHIC} \qquad \alpha_{\rm RHIC} \sim 0.3$

fit to LHC most central data: $\alpha_{\rm LHC} \sim 0.24 - 0.28$ (independent of initial time) IF α is

B.Betz et al., PRC **86**, 024903 (2012)

IF α is reduced at the LHC, κ is reduced as well!

→ Reasonable moderate reduction of the running coupling

AdS/CFT: $\kappa \propto \sqrt{\lambda}$ \leftarrow t'Hooft coupling $\lambda_{\text{LHC}} = (\kappa_{\text{LHC}} / \kappa_{\text{RHIC}})^2 \lambda_{\text{RHIC}} \qquad \lambda_{\text{RHIC}} \sim 20$ (heavy quarks)

with the values used: $\lambda_{\rm LHC} \sim 5 - 10$

→ Rather strong conformal symmetry breaking over a narrow temperature interval (1-2)T_c is required

Lattice QCD running coupling

We found that the reduction of κ needed to fit the LHC data is larger in a transverse expanding medium.

This points to a temperature-dependent running coupling as predicted by Lattice QCD

Jet-medium coupling, transverse expansion

pQCD mode (a=0, z=1)
$$\frac{dP}{d\tau}(\vec{x}_0, \phi, \tau) = -\kappa P^a(\tau) \tau^z T^{c=2-a+z}[\vec{x}_{\perp}(\tau), \tau, b]$$
$$\kappa \propto \alpha^3$$

 $\alpha_{\rm LHC} = (\kappa_{\rm LHC} / \kappa_{\rm RHIC})^{1/3} \alpha_{\rm RHIC} \qquad \alpha_{\rm RHIC} \sim 0.3$

	κ _{LHC} /κ _{RHIC}	α _{LHC}
$v_{T} = 0.0$	0.82	0.28
$v_{\rm T} = 0.6$	0.66	0.26
$v_{\rm T} = 0.9$	0.608	0.25
VISH2+1	0.43	0.23
Romatschke	0.504	0.24

R_{AA} and v_2 at RHIC for a 3d expansion

Barbara Betz

R_{AA}^{in} and R_{AA}^{out} at the LHC

Like at RHIC energies, the blast wave model fails to describe the data

The AdS and the SLTc model (assuming no running coupling) also fail to describe the data

The pQCD-based scenarios describe the data both at RHIC and at LHC

$$\Rightarrow \alpha_{LHC} \sim 0.23 - 0.26$$

Caution: Hydro parameters may differ between RHIC & LHC

 $\pi R_{AA}(p_T)$

 $\pi R_{AA}(p_T)$

R_{AA}^{in} and R_{AA}^{out} at RHIC – E^{1/3}-dependence

R_{AA}^{in} and R_{AA}^{out} at LHC – E^{1/3}-dependence

B. Betz et al., arXiv:1305.6458

R_{AA} and v_2 at RHIC

Similar results for event-by-event and averaged scenarios (no fragmentation)

R_{AA} and v_2 at RHIC

Similar results for event-by-event and averaged scenarios (including fragmentation)

Initial Conditions

12/10/13

40

NFQCD 2013, Mini-Symposium Day

Bulk properties RL Hydro & VISH2+1

CUJET 2.0

One of the surprising [61] LHC discoveries was the similarity between R_{AA} at RHIC and LHC despite the doubling of the initial QGP density from RHIC to LHC. CUJET1.0 was able to quantitatively explain this by taking into account the multi-scale running of the QCD coupling $\alpha(Q^2)$ in the DGLV opacity series. At first order in opacity the running coupling rcDGLV induced gluon radiative distribution is given by [62]

$$\begin{split} x \frac{dN_{Q->Q+g}}{dx}(\mathbf{x},\phi) &= \int d\tau \rho_{QGP}(\mathbf{x}+\hat{\mathbf{n}}(\phi)\tau,\tau) \int \frac{d^2\mathbf{q}}{\pi} \frac{\alpha_{\mathrm{s}}(\mathbf{q}^2)}{(\mathbf{q}^2 + f_E^2 \mu^2(\tau))(\mathbf{q}^2 + f_M^2 \mu^2(\tau))} \int \frac{d^2\mathbf{k}}{\pi} \alpha_{\mathrm{s}}(k_T^2/(x(1-x))) \\ &\times \frac{12(\mathbf{k}+\mathbf{q})}{(\mathbf{k}+\mathbf{q})^2 + \chi(\tau)} \cdot \left(\frac{(\mathbf{k}+\mathbf{q})}{(\mathbf{k}+\mathbf{q})^2 + \chi(\tau)} - \frac{\mathbf{k}}{\mathbf{k}^2 + \chi(\tau)}\right) \left(1 - \cos\left[\frac{(\mathbf{k}+\mathbf{q})^2 + \chi(\tau)}{2x_+E} \tau\right]\right) \,. \end{split}$$

where $\mu^2(\tau) = 4\pi\alpha_s(4T^2)$ is the local HTL color electric Debye screening mass squared in a pure gluonic plasma with local temperature $T(\tau) \propto \rho_{QGP}^{1/3}(\mathbf{x},\tau)$ along the jet path $\mathbf{x}(\tau)$ through the plasma. Here $\chi(\tau) = M^2 x_+^2 + f_E^2 \mu^2(T(\tau))(1-x_+)/\sqrt{2}$ controls the "dead cone" and LPM destructive interference effects due to both the finite quark current mass M, and a thermal gluon $m_g = f_E \mu(T)/\sqrt{2}$ mass.

We use the HTL deformation parameters (f_E, f_M) to vary the electric and magnetic screening scales relative to HTL. In general HTL deformations could also change $m_g(T)$. The default HTL plasma is (1,0) but we also consider a deformed (2,2) plasma model motivated by lattice QCD screening data. We used the vacuum running $\alpha_s(Q^2) = \min[\alpha_{max}, 2\pi/9 \log(Q^2/\Lambda^2)]$ characterized by a nonperturbative maximum value α_{max} . The parameters (α_{max}, f_E, f_M) are therefore our main model control parameters. Slide taken from Miklos Gyulassy

42 12/10/13

CUJET 2.0 \hat{q} -solution

qhat(E,T)/ T^3 vs T, E=10 black, 50 red Running Coupling CUJET2.0 solutions (1) α_{max} =0.25, μ = 1 m_D (T) solid (2) α_{max} =0.4, μ = 2* m_D (T) dashed

q̂ (E,T)/T³ ≠ const.
¬ q̂ (E,T)/T³ = const.
(as used by e.g. ASW, ...)
is not supported by a full
pQCD-calculation & realistic
(EoS, ...) hydro evolution.

