

Dr. Marco Ruggieri Dipartimento di Fisica e Astronomia, Università degli Studi di Catania, Catania (Italy)

ELLIPTIC FLOW FROM THERMAL AND KLN INITIAL CONDITIONS

Based on collaboration with: V. Greco, S. Plumari and F. Scardina

Kyoto, 2013 December 10

In this talk:

- Very short introduction to heavy ion collisions
- Transport theory and heavy ion collisions
- Thermalization
- Elliptic flow computation
- Conclusions and Outlook

QGP in Heavy Ion Collisions

Impact parameter direction

Collision (flight) direction

Collision direction

A,B: Cu, Au (RHIC@BNL) Pb (LHC@CERN).

$$\label{eq:supersolution} \begin{split} \sqrt{s} \ \mbox{up to} \ 200 \times A \ \mbox{GeV} \ , & \mbox{RHIC} \\ \sqrt{s} \ \mbox{up to} \ 2.76 \times A \ \mbox{TeV} \ , & \mbox{LHC} \end{split}$$

FIREBALL: Hot and dense expanding parton mixture: QUARK-GLUON-PLASMA (QGP) T about 10¹² K, t about 10⁻²³ seconds

QGP in Heavy Ion Collisions

Initial temperature much larger than QCD critical temperature: **Description in terms of partons is appropriate.**

J.Y. Ollitraut, PRD46 (1992)

Elliptic flow

Particle multiplicity in momentum space

$$\frac{d^3N}{dyp_Tdp_Td\phi} =$$

$$\frac{1}{2\pi} \frac{d^2 N}{dy p_T dp_T} \left[1 + 2v_2(y, p_T) \cos 2\phi \right]$$

Elliptic flow: leading contribution to anisotropy in momentum space

$$v_2 = \left\langle \frac{p_x^2 - p_y^2}{p_x^2 + p_y^2} \right\rangle = \left\langle \frac{p_x^2 - p_y^2}{p_T^2} \right\rangle$$

Immediately after the collision, **pressure gradient** along **X** is larger than that along **Y**. As a consequence, **the medium expands preferentially along the short axis of the ellipse,** creating a **flow.**

Collision direction

Impact parameter direction

J.Y. Ollitraut, PRD46 (1992)

Elliptic flow

Transfer of anisotropy

Boltzmann equation and QGP

In order to *simulate* the temporal evolution of the fireball we solve the *Boltzmann equation* for the parton distribution function *f*:

We use **Boltzmann equation** to simulate a fluid at **fixed eta/s**. **Total Cross section** is **computed** in **each configuration space cell** according to **Chapman-Enskog equation** to give the **wished value of eta/s**.

Plumari *et al.*, Phys. Rev. C86 (2012). Greco *et al.*, Phys. Lett. B670 (2009). Plumari *et al.*, J.Phys.Conf.Ser. 420 (2013).

We use **Boltzmann equation** to simulate a fluid at **fixed eta/s**. **Total Cross section** is **computed** in **each configuration space cell** according to **Chapman-Enskog equation** to give the **wished value of eta/s**.

(.) Collision integral is gauged in each cell to assure that the fluid dissipates according to the desired value of eta/s.

(.) Microscopic details are not important: the specific microscopic process producing eta/s is not relevant, only macroscopic quantities are, in analogy with hydrodynamics.

> Plumari *et al.*, Phys. Rev. C86 (2012). Greco *et al.*, Phys. Lett. B670 (2009). Plumari *et al.*, J.Phys.Conf.Ser. 420 (2013).

We use **Boltzmann equation** to simulate a fluid at **fixed eta/s**. **Total Cross section** is **computed** in **each configuration space cell** according to **Chapman-Enskog equation** to give the **wished value of eta/s**.

Transport

Description in terms of parton distribution function

(.) Collision integral is gauged in each cell to assure that the fluid dissipates according to the desired value of eta/s.

(.) Microscopic details are not important: the specific microscopic process producing eta/s is not relevant, only macroscopic quantities are, in analogy with hydrodynamics.

Dynamical evolution governed by macroscopic quantities

We use **Boltzmann equation** to simulate a fluid at **fixed eta/s**. Total Cross section is computed in each configuration space cell according to Chapman-Enskog equation to give the wished value of eta/s.

(.) Collision integral is gauged in each cell to assure that the fluid dissipates according to the desired value of eta/s.

(.) Microscopic details are not important: the specific microscopic process producing eta/s is not relevant, only macroscopic quantities are, in analogy with hydrodynamics.

Non perturbative description: we never assume coupling is small.

We use **Boltzmann equation** to simulate a fluid at **fixed eta/s**. **Total Cross section** is **computed** in **each configuration space cell** according to **Chapman-Enskog equation** to give the **wished value of eta/s**.

Huovinen and Molnar, PRC79 (2009)

There is agreement of hydro with transport also in the non dilute limit

We use **Boltzmann equation** to simulate a fluid at **fixed eta/s**. **Total Cross section** is **computed** in **each configuration space cell** according to **Chapman-Enskog equation** to give the **wished value of eta/s**.

Bhalerao et al., PLB627 (2005)

There is agreement of hydro with transport also in the non dilute limit

We use **Boltzmann equation** to simulate a fluid at **fixed eta/s**. **Total Cross section** is **computed** in **each configuration space cell** according to **Chapman-Enskog equation** to give the **wished value of eta/s**.

A *smooth kinetic freezout* is implemented in order to gradually reduce the strength of the interactions as the temperature decreases below the critical temperature.

Temperature dependence of eta/s already appeared in the literature recently.

H. Niemi *et al.*, PRC86 (2012), PRL106 (2011)

Shen and Heinz, PRC83 (2011)

McLerran and Venugopalan, PRD **49**, 2233 (1994) McLerran and Venugopalan, PRD **49**, 3352 (1994)

Fukushima, 2011

Decay of flux tubes to parton liquid should occur on a timescale 1/Qs

Initial condition: fKLN

(f)KLN spectrum

Nardi *et al.*, Nucl. Phys. A**747**, 609 (2005) Kharzeev *et al.*, Phys. Lett. B**561**, 93 (2003) Nardi *et al.*, Phys. Lett. B**507**, 121 (2001) Drescher and Nara, PRC**75**, 034905 (2007) Hirano and Nara, PRC**79**, 064904 (2009) Hirano and Nara, Nucl. Phys. A**743**, 305 (2004) Albacete and Dumitru, arXiv:1011.5161[hep-ph]

$$Q_{s,A}^{2}(x,x_{\perp}) = Q_{0}^{2} \left(\frac{T_{A}(x_{\perp})}{1.53p_{A}(x_{\perp})}\right) \left(\frac{0.01}{x}\right)^{2}$$

$$Q_{0} = 1 \, GeV$$

For Pb-Pb collision average Qs can be larger [Lappi, EPJC71 (2011)]

Few remarks on KLN

- fKLN is not glasma [Blaizot et al., NPA846 (2010)]
- It is not our purpose to insist on exact reproduction of experimental data

[Gale et al., PRL110 (2013)]

Rather we want to check the role of the initial distribution in momentum space
 Hydro widely uses KLN, and we are interested to compare the two approaches

Viscometer: Schen et al., arXiv1308:2111 Thermometer: Schen et al., arXiv1308:2440 Flow computations: Ollitrault et al., arXiv1311:5339 Drescher and Nara, PRC75 (2007) Hirano and Nara, PRC79 (2009) Hirano and Nara, NPA743 (2004)

Initial condition: Th-Glauber

(Almost) Geometrical description of the fireball:

Assuming a nucleon distribution in the parents nuclei (typically a *Woods-Saxon*), one counts *how many particles* from each nucleus are present in the *overlap region*; among them, the *participants* are the nucleons that effectively can have an interaction (in fact, the particles that *are in the overlap region* but *do not interact*, are not considered).

For a review see: Miller et al., Ann.Rev.Nucl.Part.Sci. 57, 205 (2007)

Initial spectra

Our novelty:

For fKLN we consider the *initial spectrum given by the theory at small transverse momenta*.

Initial spectra

Our novelty:

For fKLN we consider the *initial spectrum given by the theory at small transverse momenta*.

Thermalization

Final spectra of fKLN and Th-Glauber coincide

Thermalization

Not so surprising:

Because eta/s is small, large cross sections naturally lead to fast thermalization. However, interesting: We have dynamics in the early stages of the simulation, which prepares the momentum

distribution to build up the elliptic flow.

Thermalization

Not so surprising: Because eta/s is small, large cross sections naturally lead to fast thermalization. However, interesting: We have dynamics in the early stages of the simulation, which prepares the momentum distribution to build up the elliptic flow.

M. R. et al., PLB727 (2013) M. R. et al., in preparation Elliptic flow from Transport

Au-Au collision RHIC energy

Larger eccentricity of KLN implies larger v_2

Results in fair agreement with hydro: Song *et al.*, PRC8₃ (2011)

M. R. et al., PLB727 (2013) M. R. et al., in preparation Elliptic flow from Transport Au-Au collision

Elliptic flow from Transport Pb-Pb collision LHC energy

Elliptic flow computations show this quantity is **very sensitive** to the **initial conditions**: .) Initial anisotropy (eccentricity) .) Initial momentum distribution

Measurements of elliptic flow in experiments might permit to identify the best theoretical initial conditions.

Elliptic flow from Transport Au-Au collision RHIC energy Summary of the effect on differential v,

For more central collisions the effect on v2 becomes milder.

Are micro-details important?

M. R. et al., in preparation

M. R. *et al.*, in preparation M. R. *et al.*, work in progress Invariant distributions

Conclusions

- OGP produced in heavy ion collisions behaves as a liquid rather than a gas, developing collective flows.
- Kinetic Theory permits to compute elliptic flow of plasma, as well as its thermalization times and isotropization efficiency.
- Initial distribution in momentum space affects the flow and the building up of momentum anisotropy.

Outlook

(.)Bose-Einstein condensate

BE condensation, in particular at LHC energy [Blaizot *et al.*, NPA920 (2013), NPA873 (2012)]

(.)Initial conditions from classical field dynamics
 Implementation of the proper initialization from glasma spectrum&eccentricity
 (.)Fluctuations in the initial condition

Systematic study of higher order harmonics

(.)Inelastic processes

Implementation of 2 to 3 and 3 to 2 processes in the collision integral

THANK YOU FOR YOUR ATTENTION

Freedom creates doubts. (James Douglas Morrison)

Spectra and data

Pressures: weak coupling

Eccentricities

QGP in Heavy Ion Collisions

Initial temperature much larger than QCD critical temperature: **Description in terms of partons is appropriate.**

Thermalization

Fireball Isotropization

Complete isotropization in strong coupling (perfect gas would not be efficient to isotropize pressure)

Fireball Isotropization

Complete isotropization in strong coupling (perfect gas would not be efficient to isotropize pressure)