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% Overview of the Lectures
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. m Lecture 1 - Introduction to QCD and Jet

! m QCD basics

m Sterman-Weinberg Jet in et e~ annihilation and Other Jet Observables
S, m Collinear Factorization and DGLAP equation

o m Lecture 2 - Saturation Physics (Color Glass Condensate)

m BFKL equation

m Non-linear small-x evolution equations

m One loop calculations and Sudakov factors
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m R.D. Field, Applications of perturbative QCD A lot of detailed examples.
R m R. K. Ellis, W. J. Stirling and B. R. Webber, QCD and Collider Physics

Jel

m CTEQ, Handbook of Perturbative QCD
m CTEQ website.

: m John Collins, The Foundation of Perturbative QCD Includes a lot new
prcie development.

m Yu. L. Dokshitzer, V. A. Khoze, A. H. Mueller and S. I. Troyan, Basics of
Perturbative QCD More advanced discussion on the small-x physics.

m S. Donnachie, G. Dosch, P. Landshoff and O. Nachtmann, Pomeron Physics
and QCD

V. Barone and E. Predazzi, High-Energy Particle Diffraction

Y. Kovchegov and E. Levin, Quantum Chromodynamics at High Energy
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Introduction to QCD and Jet

m QCD Basics

m Jets and Related Observables

m Collinear Factorization and DGLAP equation

m Transverse Momentum Dependent (TMD or ;) Factorization

Introduction to Saturation Physics

m The BFKL evolution equation

m Balitsky-Kovchegov evolution

m Forward Hadron Productions in pA Collisions
m Sudakov factor
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QCD Basics.
Je
Rel
Observables

nd

Collineas
Factorization
and DGLAP
equation
Transverse

Momentum
Dependent

(TMD or £,)
Factorization
The BFKI
evolution
equation
Balitsky-
Kovehegov

evolution

Forward
Hadron
Productions in
PA Collisions

Sudakov factor

QCD

QCD Lagrangian

. 1 - _
L:w(ry-afmq)l,ufZF'w F e — WY - Ay

with F%,, = 9,A% — 0,A% — gfucALAS.
m Non-Abelian gauge field theory. Lagrangian is invariant under SU(3) gauge
transformation.

m Basic elements:

m Quark U’ with 3 colors, 6 flavors and spin 1/2.
m Gluon A** with 8 colors and spin 1.
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Making Big Bang soup
Sclentist say that in the

first millionth of a second

aftr the Big Bang, the

universe consisted of an
unimaginably dense and

hot "soup” of quarks a

Quark-gluon Nuclear particles
plasma

Within a ten-thousandth of a second, the universe
expanded and cooled to the point that quarks = along
with binding particles dubbed gluons = congealed into
nuclear particles such as protons and neutrons.
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e Fundamental representation: 7;; and Adjoint representation: 7. = —ifuse
to QCD and

Jet

QCD Basics
Jets and

Related

onwe  The effective color charge: Cr Ch Te

Collinear

a b - rabc e
Factorzation ] [T , T ] = if"T
and DGLAP

m Tr (1°7%) = 76 Sy.mbol | SU(n) SU1(3)
2
4
3
3

Transverse

Momentum TF
Dependent m 7T = CF x 1

(TMD or k,)
Factorization

- fabc‘fabd — CA 5cd ( ,F
Physics C"A n

The BFKL

evolution

Introduction
to Saturation

equation
Balitsky-
Kovehegov
evolution
Forward
Hadron
Productions in
pA Collisions

Sudakov factor
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Fierz identity and Large N, limit

Introduction . . cee. grara 1 1
] ® Fierz identity: T;T = 50udj — - 0i0u

Jet —_—— —_——
Bo-Wen _1 _ 1

Xiao 2 e

Introduction ™ Large Nc limit; 3 > 1

to QCD and
Jet
QCD Basics
Jets and
Related
Observables
Collinear
Factorization
and DGLAP
equation (@)
Transverse
Momentum
Dependent
(TMD or k,)
Factorization

Introduction

~

to Saturation
Physics

The BEKL o)
evolution
equation
Balitsky-
Kovchegov
evolution
Forward
Hadron
Productions in

PA Collisions \/

Sudakov factor (0)
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to QCD and N . _ .
et wds | m The ratio between the e*e¢™ — hadrons total cross section
BoWen " and the eTe™ — ™ cross section.
————— o(e*e” — hadrons) ) a,(0%)
. = : R= =N, Z 2l )
e ‘ = olete™ = putu™) y ™
QCD Basics U,d,8,--
- m N, Zu,d,s e[? =2
7 : 2 _ 10
ﬂ;::w‘x>u{”:;y j_,fd, [N = N Zu,d,s,c e = ?“
Transverse : e m Ne Zu,d,s,z‘,b ¢ =3
L) Triangle anomaly: m The decay rate is given by the quark triangle loop:
° Decay ) 3
2 atm
r (7r0 = ) =N (e2 - ez) O 7.7ev
. R e\ ™) Gamz
evolution u
: \ " m fr =92.4MeV is 7~ — p~ v decay constant.
¥ m The data give I (7r0 — 77) = 7.7+ 0.6eV.
Fairon = Nonrenormalization of the anomaly.
e [Adler, Bardeen, 69]

Sudakov factor
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Factorization
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evolution

QCD beta function and running coupling

[Gross, Wilczek and Politzer, 73]

m The QCD running coupling

s (Q) = 2w |

(%NC — %Tan) In QZ/A2 \ 44 Deep Inelastic Scattering

oe ete— Annihilation

04t W\
m QED has only fermion loop contributions, thus its
coupling runs in opposite direction.

+ 02
+ * 4  + 1
- - - + + +
+- @ - + ++ ++ " =QCb  0(M2)=0.1189 £0.0010
- - + 1 10 100
+ + r + + r. QIGev]
—_— E—

QED like contribution  gluon contribution



QCD beta function and running coupling
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27
(MNe — 2Teng) In Q2 /A2

Do e i e, el Dl el OO,

QS(Q) =

QCD Basics

Screening Anti-Screening
+
+ * 4 + + 1
e ®
- @, @ oy
+ T+ r + *4 r
_— —_—

Quark loop QED like contribution Non-Abelian gluon contribution
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QCD Basics

% Brief History of QCD beta function

1954 Yang and Mills introduced the non-Abelian gauge thoery.

1965 Vanyashin and Terentyev calculated the beta function for a massive
charged vector field theory.

1971 "t Hooft computed the one-loop beta function for SU(3) gauge theory, but
his advisor (Veltman) told him it wasn’t interesting.

1972 Gell-Mann proposed that strong interaction is described by SU(3) gauge
theory, namely QCD.

1973 Gross and Wilczek, and independently Politzer, computed the 1-loop
beta-function for QCD.

1999 ’t Hooft and Veltman received the 1999 Nobel Prize for proving the
renormalizability of QCD.

2004 Gross, Wilczek and Politzer received the Nobel Prize.
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QCD Basics

Colline:
Factorization
and DGLAP

quation

Factorization

The BFKI

Confinement

3 oF
o
= .t
o 15[
>
e
os [
o
—05
i © p=6.2
0 g=6.4
s 4 =68
2 | | | I I | 1
025 05 075 1 125 15 175 2

R/fm

Non-perturbative QCD. Mass gap between gluon and hadrons. Millennium
Prize Problem!

Linear potential = constant force.

Intuitively, confinement is due to the force-carrying gluons having color
charge, as compared to photon which does not carry electric charge.

Color singlet hadrons : no free quarks and gluons in nature



How to test QCD ?

Introduction
to QCD and .
Jet m Non-perturbative part:
Bo-Wen
Xiao
Introduction . :
10 QCD and m Hadron mass (Lattice QCD)
Je m Parton distributions (No free partons in the initial state)
(P m Fragmentation function (No free quarks and gluons in the final state)
Jets and
S m Perturbative QCD: needs to have Factorization to separate the short distances
Collinea (perturbative) physics from the long distance (non perturbative) physics.
Factorization ey .
and DGLAP m ete™ annihilation.
o m Deep inelastic scattering.
i m Hadron-hadron collisions, such as Drell-Yan processes.
( J‘ViH) \:\ k) e*e” - Hadrons Kinematics of Lepton-Nucleon Scattering Drell-Yan Process
Factorization /’\'
Introduction ‘ k e
to Saturation
Physics q
The BFKI
Balitsk;

m Collinear factorization demonstrates that collinear parton distribution and
fragmentation function are universal.

Forward
Hadron

Productions in

pA Collisions

Sudakov factor
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m QCD Basics

m Jets and Related Observables

m Collinear Factorization and DGLAP equation

m Transverse Momentum Dependent (TMD or ;) Factorization

Introduction to Saturation Physics

m The BFKL evolution equation

m Balitsky-Kovchegov evolution

m Forward Hadron Productions in pA Collisions
m Sudakov factor
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eTe™ annihilation

Introduction
10 QCD and e*e” — Hadrons smgularltles

Jet

Bo-Wen y; X2

Xiao
Introduction ¢ ¢
to QCD and
Je
QCD Basies ;
Jets and 4
Related
Observables
Factorization

§ 2\ €
and DGLAP . . T2—
e m Born diagram (“/V\'<) gives 090 = Qem+/SNe Y . ez (4”5“ ) ﬁ
Transverse
. . __ 2E; .
o m NLO: real contribution (3 body final state). x; = o with Q = /s
(TMD or k,)
Factorization
d0'3 Qg X% + X%

Introduction - — CFia-Oi
o Saurtion dxdx, 27 (1 —x)(1 —x2)
The BFKI ith 1 1 1 1
evolution wit e — _|_
;‘““"l"“”‘r (1 —xl)(l — XQ) X3 (1 —xl) (1 — XQ)
Kovchegov
coltion m Energy conservation = x; +x2 + x3 = 2.
Forward 2 _ _ 2 _ 2
Hadron B (pr+p3)? =2 -p3=(Q—p2)" =0 (1 —x2)
pA Collsons m x; = 1 = p3 || P1 = Collinear Divergence (Similarly x; — 1)
Sudakov factor [

x3 — 0 = Soft Divergence.
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Dimensional Regularization

{")'gguD“g"x To generate a finite contribution to the total cross section, use the standard
Jet procedure dimensional regularization:
Bo-Wen . . . . .
Xiao m Analytically continue in the number of dimensions fromd = 4 tod = 4 — 2e.

m Convert the soft and collinear divergence into poles in e.

m To keep g, dimensionless, substitue g, — g, with renormalization scale p.

QCD Basics

s nd At the end of the day, one finds
() O\ “Tll—¢ [2 3 19 277
Facuriaion . = c B R
e 7 o (47ru2 [l —2¢] | € + € *t3 3
= _ o) N\ -4 2 3 . o2
aT Ty Cr (47rp2 T[1—2¢ | € ¢ 8+ 3

and the sum lim¢_,o 0 = o9 (1 + %Q% + O(af)).

m Cancellation between real and virtual for total cross section. Bloch-Nordsieck
theorem

m For more exclusive observables, the cancellation is not always complete. One
needs to do subtractions of é + In4m — vg (MS scheme).

m Sterman-Weinberg Jets.




% Sterman-Weinberg Jets

L")'gg"D“g:x Definition: We define, an event contributes if we can find two cones of opening
Jet angle ¢ that contain all of the energy of the event, excluding at most a fraction € of
Bo-Wen

the total, as the production of a pair of Sterman Weinberg jets.

Xiao

QCD Basics

Jets and
Related
Observables

Colline

Factorization 2
AP

and [

E+E+E;< ¢E

m Jets in experiments are defined as a collimated distribution of hadrons with
total energy E within the jet cone size R = /d¢? + 6n?.

m Jets in QCD theory are defined as a collimated distribution of partons. Need to
assume the parton-hadron duality.

‘ m Jet finding algorithm: (k;, cone and anti-k;)See other lecture.
[M. Cacciari, G. P. Salam and G. Soyez, 08]




ete™ — y* — jets
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Xiao % %
¢ @ ERO!
»
QCD Basics N 1°>¢E q
Jets and I’<:sE <6
Related e e < =
Observables
Colline:
Ee G T
Factorzaton m a. The Born contribution: oy, following the earlier calculation:
. . . ) E dl 4dcos 0
. ﬂ ey
m b. The virtual contribution: —ooCr3 fo (T—cos 0)(1+c0s 9)
€E 4| 4d cos 6
e bkl m c. The soft real contribution: ooCr 5= fo fo T—c0s 6) (105 )

m d. The hard real contribution: O'OCF% feEE % [fo + f:—é] %

E gl m™—3 4dcos6 4Cra
_ _ Qg al — . F&s
® sum = o [1 Cris feE il e e [1 £% Ineln 5}

m More complete results including finite ¢, § corrections. [B.G. Weeks, 1979]
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Related
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Colline
Factorization
and DGLAP

The BFKI
evolution

Infrared Safety

We have encountered two kinds of divergences: collinear divergence and soft
divergence.

Both of them are of the Infrared divergence type.That is to say, they both
involve long distance.

m According to uncertainty principle, soft <+ long distance;
m Also one needs an infinite time in order to specify accurately the particle momenta,
and therefore their directions.
For a suitable defined inclusive observable (€.g., 0+ ,— _,padrons)» there is a
cancellation between the soft and collinear singularities occurring in the real
and virtual contributions. Kinoshita-Lee-Nauenberg theorem

Any new observables must have a definition which does not distinguish
between

parton <+ parton + soft gluon
parton <> two collinear partons
Observables that respect the above constraint are called infrared safe
observables. Infrared safety is a requirement that the observable is calculable
in pQCD.

Other infrared safe observables, for example, Thrust: T = max%



Thrust

:g'g’gu];g::; Global observable reflecting the structure of the hadronic events in e e :
Jet
Bo-Wen T Zr ‘/)i i ”‘
it
QCD Basics
Jets and
Onmenabies T T T=1 T=1/2

m For 3-particle event, in terms of x; and x», the cross section is

dos  Cras 043
godxidxy — 2m (1 —x1)(1 —x2)

m In this case, 7 = max[xi, x2, x3]

S m By symmetrizing x;, and requiring x; > x, > x3, we get T = x; > 2/3 and
dos 2Cras [T X4
= do | ——————— — —
oodT 2 /I_ZT 2 {(1 T —x) TR+ e o)
_ Crao; 2(37% — 3T +2) In 2T—1 33T-2)2-7)
- 2n T(1-7T) 1-T 1-T
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QCD Basics

Jets and
Related
Observables

Collinear
Factorization
and DGLAP

equation

Transverse
Momentum
Dependent
(TMD or £,)

Factorization

Introduction
to Saturation
Physics

The BFKI
evolution

equation

Balitsky-
Kovehegov
evolution
Forward
Hadron
Productions in

pA Collisions

Sudakov factor

1/0, do/dT

doy  Cray [23T*=3T+2) 2T—1 3(2-37)2-T)

= In +
oodT 2 T(1-T) 1—-T 1-7T
102 T T T ] 30 T T T I T l I
J [ Thrust distribution at LEP b
o OPAL ){é 10 — - Vector gluon
o' L = = = = O(og) with o = 0.2434 4 ol E - Scalar
2 L
~ E 3~
o
100 b Da.n“‘ g S r
o
b
000 U
un/’ - E
0% C
% L
101 b o | F
° 31—
/
i /
1 s/
102 L L L 1 | .
0.6 0.7 0.8 0.9 1 R 6 7 8 ] 1
T T

Deficiency at low T due to kinematics. 7 > 2/3 at this order.
Miss the data when T — 1 due to divergence. Sudakov factor!
do ‘ 4Cray 4 In 1 a;Cr |
O'()dT T—1

2
1T
w G TP T =D

Indication of gluon being a vector boson instead of a scalar.
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Fragmentation function

+

T Factorization of single inclusive hadron production in e™e™ :
to QCD and
Jet — 1
1 do (€+€ —h + X ) 2 2 2
Bo-Wen — = C; o K Dy, /i(x O(1/s
Xiao 00 dx Z g t(Z: S(p‘ )7 /lu) h/r( /Z,}L)—F (/)
1
w Light (Ijuarks s Heavy ‘Quarks
atz (1-2) €,=0.016

QCD Basics 10§ a=3.5, b=2.5+ €,=015

Jets and ‘t ]

Related F

Observables o N 1

5 E

mdDOLAT ]

e 0k

4 T

Dep: lent e

(TMDork) . . .

Eactorization 0.00 0.50 1.00 0.00 0.50 100

g— m Dy/i(x/z, uz) encodes the probability that the parton i fragments into a hadron
ation h carrying a fraction z of the parton’s momentum.

e m Energy conservation =

Forward ! h 2

> | deaDen’) =1

pA Collisions h 0

Sudakov factor

m Heavy quark fragmentation function: Peterson fragmentation function
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m The BFKL evolution equation

m Balitsky-Kovchegov evolution

m Forward Hadron Productions in pA Collisions
m Sudakov factor
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Collinear
Factorization
and DGLAP
equation

(TMD or k,)

Factorization

The BFKI
evolution

% Light Cone coordinates and gauge

For a relativistic hadron moving in the +z direction

t

z
Az =1/P
m In this frame, the momenta are defined
1 0 3 — 1 0 3
Pr=—P +P) and P-=—P -P)—0
\/5( ) ﬁ( )

m PP=2P"P" — P}
m Light cone gauge for a gluon with momentum k* = (k*, k™, k, ), the
polarization vector reads
_ -k .
Fe,=0= e= (" =0 = %,ef) with f =

€
G

(1,£0)
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QCD Basics
Je

Collinear
Factorization
and DGLAP
equation

The BFKI
evolution

Deep inelastic scattering

Summary of DIS:
do aue E
dE'dQ ~ Q' E
. o with L,,,, the leptonic tensor and W*” defined as

— L, W

,PT’_( \) P wH = ( g,uu + q;tqu ) W,
- T v 7
S mass W P P

1 ) v ) v
b () (- )
n, q q

Introduce the dimensionless structure function:

0’
Fi=W, and F, = W,
2mpx
do Oy e som? [ 2 ] . P-q
—— = T (1 —y)F F th y=—.
= ddy o (=)t ] with -y -k

Quark Parton Model: Callan-Gross relation

Fy(x) = 2xF1 (x Zeqx[fq )+ fa(x0)].
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to QCD and )’(m; 8 + & 0‘)
Jet PRET i)
\EJ T 27 207 %03 { o,
Bo-Wen ; b Fix)
! & L 0 1 Tu
Xiao (dql dX)M..m . (F‘(X) c"s'”'zw 7 26,9 sin ) [
thifae fagmed e
Introduction

b 15co oo
0 QCD and b os<gen

Je ¥ ucg<rn
QCD Basics
Jets and i 1%
Related P
Observables R ea e
Collinar Fo docnbe
Factorization r .

and DGLAP 2:7&

i “ﬁ A

(TMD or k,)
Factorization o5 4
Introduction
to Saturation

Physics Soin0

The BFKI

evolution

equation IR TR IS . SR cleon scattering experiments.

o unity s exporied 1 e i of e 45 he

Balitsky led (rom published SLAC data.J

Kovchegov o«

evolution 4

Forward

. m The relation (F = F, — 2xF) follows from the fact that a spin—% quark cannot absorb a
PA Collisions longitudinally polarized vector boson.

Sudakov factor

m In contrast, spin-0 quark cannot absorb transverse bosons and so would give F'; = 0.




Parton Density

Introduction lictic 1 s o
v The probabilistic interpretation of the parton density.

Jet
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= A = [P B0y 0.0

P

,
Comments:

m Gauge link £ is necessary to make the parton density gauge invariant.
Collinear

Factorization

and DGLAP

-
Sqmin L£(0,(7) =Pexp / ds, A"
0

(TMD or

i m Choose light cone gauge A™ = 0 and B.C., one can eliminate the gauge link.
m Now we can interpret f,(x) as parton density in the light cone frame.
m Evolution of parton density: Change of resolution

The BFKI I Large x: valence quarks Small x: Gluons, sea quarks

evolution @5
.~
/ i
o
o

m At low-x, dominant channels are different.




Drell-Yan process

Introduction

For lepton pair productions in hadron-hadron collisions:
to QCD and

Jet
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QCD Basics

Collinear

Rnizin the cross section is
equation
do 1 247ra 1. x
xify (x1)x2f7 (x with Y = -In—.
dMm2dy Z alx)xafybe) 3¢ 3 2 x

m Collinear factorization proof shows that f; (x) involved in DIS and Drell-Yan
process are the same.

The BFKI

evolution m At low-x and high energy, the dominant channel is gg — g~*(I717).

]
q
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QCD Basics

Colli

Ftine Py = LTE |3
i _1+e
equation 49

Transverse

Momentum 0 2
Tperty Peg(8) = 2 [1 +(1-9) ]
o P = [(1 - +€],
>hysics

2

The BFKL

o Ph(€) = {%Jréﬂ(l—é)] +(6 N )5(1—5)-

Balitsky-

Kovehegov

evolution

Forward o x

Hadr | é-— = z.
Yy

Productions in

L def(e) 1 deffe)—f()] L_de
Sudakov factor . f() (1-&) ¢+ - \/;) 1-£ :>‘/;) [ =0

pAC
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Related
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Collinear
Factorization
and DGLAP
equation

Introduction
to Saturation
Physics

The BFKI

evolution

Forward

Sudakov factor

-

The real contribution:

2 . L8
ki =(P7,0,01) 5 k= (&P ,&,ﬁ,h)
@2 2%, P
o _ept e — (0. — L
k3_((1 g)P 7(17£)P+’ kl) 3 ( ) (17£)P+7
3
. 265 1+¢
|Vq—>qg|27 *Tr(kﬂukl% ZE ME_ = m 1—55
2
> Pul© =T €<

m Including the virtual graph 205 , use f] dgggi = fal % —g(1) fol li—i
asCrp

=1 ;1 %09 S —atw [ ae! *ﬂ

- ‘“CF[;df e/~ ‘*52 — ) /lds 1+ & }
Jo “0-941

2 (1-9+ (I-8+

lw



Derivation of PJ), (£)

Introduction The real contribution:
to QCD and
Jet
Bo-Wen 2 k2
Xiao k=T, 000 ; kz:(EPJr’ﬁ’“)
2 (3)
k 2k - €
o — + L _ L1 (3)
k= ((1—-¢&prT", ,—kj) e3=(0,— se’)
1 (- ert a-eprt *

QCD Basics

w20 148

s Vaosasl” = 5T (yyukin) D e

ety PO Tl 1-¢

equation

()

_1+€
1=¢

€<

m Regularize ;— by including the divergence from the virtual graph.

0= 5)
= Probability conservatlon

a;Cp

1
Pug 0Py = 31 =9 + SEPL @ and [ aep(o) =0,

_1+& 3 (14 &
ﬁpqq(f)*@*'ifs(l—f)*(1_£)+~




Introduction

to QCD and
Jet 2 k=@t 0,0,) (1:(0,0,68)) with ef:é(l,ii)
Bo-Wen o)
Xiao 2 2% e
k= (ePt, T k) = = L @
) = (€ py= 1) e =( pyes e
2 %, @
1 k=(1—ept, —L k) g=(0-"L,
— } G-t H T (1-ort
L 3
R
Observables
R Vesee = (ki + k3) - @261 -3+ (ko — k3) - e162 - &3 — (ki + k) - 361 - &2
and DGLAP
equation 2
2 [1-€(1-¢)]
o = Vergel” = Vit P+ [V P+ Vi P = 40 LTan e

1 —
= Pu(o =2 [Tg sfren-o] €<
m Regularize — to (1_§)+
= Momentum conservanon

evolution

!:’ ard /0 €& [Pyg(§) + Pee(&)] =0 /0 d€ &€ 2Py (8) + Pee(§)] = 0,

= the terms which is proportional to 6(1 — &).

RON

1



DGLAP equation

{3'8}?”53:3 In the leading logarithmic approximation with £ = In ., the parton distribution and
Jet fragmentation functions follow the DGLAP[Dokshitzer, Gribov, Lipatov, Altarelli,
Bowen Parisi, 1972-1977] evolution equation as follows:

S22 ol AT GRO) T ][ al/en) ],

and

Collm‘ear\ E { Dyyq (2, 1) } _ M/l ﬁ { CrPy (§)  CrPy (&) ] { Dy yq (z/& 1) }
Dyyg (2, 11) 2m 3 TrPys (€)  NePyg (€) Dy (z/6, 1) |7

Comments:
m In the double asymptotic limit, Q* — oo and x — 0, the gluon distribution can
be solved analytically and cast into

Factorization
and DGLAP dr
equation

2

Ho

In p? /A2
exp( \/ —In— %) Running coupling

m The full DGLAP equation can be solved numerically.

N 1 . .
The BFKI xg(x, Mz) ~ exp (2 Qe 2 p In M2> Fixed coupling

1R

xg(x, 1)
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Forward
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% Collinear Factorization at NLO

PDF

Use MS scheme (é = é + In47m — ~¢) and dimensional regularization, DGLAP
equation reads

{ q(x, ) ] _ [ g (x) }_ La(p / dg { CrPyq (§)  TrPyq (€) ] { q(x/€) }

g (x, 1) g(0> (x) 2w ? CrPgy (&)  NePygy (€) g (x/€)

and

{ Dysy (1) } _ [ D@ | _tamw /1 dg [ CrPu (€)  CrPe () } { Dy (:/€)
Dy, (z,p1) D(O) . € TrPgg (§)  NePgg (€) Dy, (z/6)

/g (2) € 2w
m Soft divergence cancels between real and virtual diagrams;

m Gluon collinear to the initial state quark = parton distribution function; Gluon collinear
to the final state quark = fragmentation function. KLN theorem does not apply.

m Other kinematical region of the radiated gluon contributes to
the NLO (O(ay) correction) hard factor.



DGLAP evolution

Introduction
to Q(JII[) and ZEUS
I
6 Q=1Gev? 25Gev?
NP H1 and ZEUS
Xiao A — ZEUSNLO QCD it
~ «
HERA INC ¢'p )
L Fixed Target
HERAPDFL.0 . X5
E 2
QCD Basics
Jets and 2 7GeV? 20 Gev?
Related tot. error tot. error
Observables (@, free) (@, fixed)
Collinear o - ;\o:nry error
Factorization 10
and DGLAP xg
equation

ependen 2000 Gev?
(TMD or k)
Factorization
af
The BFKI 10
evolution ! T
07 107 w1
equatior |
Balitsky-
Kovehegoy

evolution

iy m NLO DGLAP fit yields negative gluon distribution at low Q* and low x.

Hadron

Productions in

AR m Does this mean there is no gluons in that region? No

Sudakov factor



Phase diagram in QCD

Introduction

to QCD and

Jet

Y=In1/x}
Bo-Wen

Xiao 2
InQ5(Y)=AY
Introduction
to QCD and
Jet
QCD Basics

Jets and
Related
Observabl i
servables Dilute system

Collinear
Factorization
and DGLAP
equation

Momentum

Dependent
(TMD or k,)

Factorization DGLAP

Introduction
to Saturation

Physics 2 2
’ In A InQ

The BFKL aco

evolution

Balitsky-

st m Low Q7 and low x region = saturation region.

evolution

Forvad m Use BFKL equation and BK equation instead of DGLAP equation.

Hadron

ke m BK equation is the non-linear small-x evolution equation which describes

pA Collisions

Sudakov factor the saturation physics.
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Collinear Factorization vs k| Factorization

Introduction Collinear Factorization
to QCD and
Jet

Bo-Wen
Xiao

k1 Factorization(Spin physics and saturation physics)

bles
al r q

Collinear

Factorization p
and DGLAP

. k k
equation v

k
g

lent
(TMD or k,)

Factorization

m The incoming partons carry no k| in the Collinear Factorization.

m In general, there is intrinsic k . It can be negligible for partons in protons, but should be
The BRKI taken into account for the case of nucleus target with large number of nucleons
evolution
(A — 00).

. m / Factorization: High energy evolution with k; fixed.

evolution

Forward m Initial and final state interactions yield different gauge links. (Process dependent)
Hadron

Podicion m In collinear factorization, gauge links all disappear in the light cone gauge, and PDFs are

PA Collisions

SR universal.
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k; dependent parton distributions

The unintegrated quark distribution

flkn) = [ g e T GO0)£ 0 £ )0l )] P

as compared to the integrated quark distribution

50 = [ o0 L€ w0, P

The dependence of £ in the definition.
m Gauge invariant definition.

Light-cone gauge together with proper boundary condition = parton density
interpretation.

The gauge links come from the resummation of multiple gluon interactions.

Gauge links may vary among different processes.

(00,00) | | (00,00)

(0,0) (00,0) 71\.’,: k+gq L‘\f’: l‘\i




Introduction
to QCD and
Jet

Bo-Wen
Xiao

QCD Basics

Transverse
Momentum
Dependent
(TMD or k)
Factorization

Two Different Gluon Distributions

[F.Dominguez, BX and F. Yuan, PRL, 11]
I. Weizsacker Williams gluon distribution: Gauge Invariant definitions

df d§ ixPt —1i i !
G = 2/ (2@3[:6 PTET —ik - 5J‘TI‘<P|F+ (& fL) TF+( )U[H |P).

II. Color Dipole gluon distributions: Gauge Invariant definitions

G :2/ dE e 1 e ik Ly pi (e ¢l U™ P).

(2n) P+
£ = . ET} -:1
7é\f\r | O ‘ _ ﬁ;}}j‘?—'
VS 13 3 JY
Y- Y]

m The WW gluon distribution is the conventional gluon distributions.
Quadrupole = Direct measurement: DIS dijet, etc.

m The dipole gluon distribution has no such interpretation.
Dipole = «-jet correlation in pA.

41/78



% TMD factorization

Introduction
to QCD and
Jet
Bo-Wen One-loop factorization:

Xiao

QCD Basics
J

F
C
¢
F

and DGLAP For gluon with momentum k

Mascos m kis collinear to initial quark = parton distribution function;
Dependent . . ~ . ~ .
D ork) m kis collinear to the final state quark = fragmentation function.

Factorization
m kis soft divergence (sometimes called rapidity divergence) = Wilson lines
(Soft factor) or small-x evolution for gluon distribution.

The BFKI

m Other kinematical region of the radiated gluon contributes to
the NLO (O(«) correction) hard factor.

m See new development in Collins’ book.

pA Collisions

Sudakov factor
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Deep into low-x region of Protons

Gluon
Density
Grows

) . 0
Gluon splitting functions (7,

©)

Low Energy

High Energy

0
and P,

HI1 and ZEUS Combined PDF Fit

xf

Q' =10 GeV?

- HERAPDFO2 (prel
B cp.uncert

model uncert,
W pavametrization uncert.

xu,

wre Functions Waorking Group

X2 0.05)

| xS (c005)

(£)) have 1/(1 — &) singularities.

m Partons in the low-x region is dominated by gluons.

Resummation of the oy In i

April 2009
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Dual Descriptions of Deep Inelastic Scattering

:g‘g’gggx [A. Mueller, 01; Parton Saturation-An Overview]

Jet

Bo-Wen
Xiao

Bjorken frame Dipole frame
Bjorken frame

Fax, @) = Y e [fi(x, @) + (v, 01)] -

Dipole frame

2 1
R = g2 [ @y (o OF + o]
I T“Qem J(

(TMD or k,)

Factorization

The BFKL X[1=8(ry)], with ri =x1 —yi.
evolution
equation

Balitsky-

m Bjorken: partonic picture of a hadron is manifest. Saturation shows up
as a limit on the occupation number of quarks and gluons.

m Dipole: partonic picture is no longer manifest. Saturation appears as the
unitarity limit for scattering. Easy to resum the multiple gluon interactions.
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BFKL evolution

[Balitsky, Fadin, Kuraev, Lipatov;74] The infrared sensitivity of Bremsstrahlung
favors the emission of small-x gluons:

P p p

ka=aip

k.= ap

r<<1 << @

Probability of emission:
dk; dx
dp ~ CZSNC; = a.vNci
k, X
In small-x limit and Leading log approximation:

=) U gy 14 1
PNZQ?NS/ J/ adl ~ exp (a,er‘ln 7)
n=0 x T = ¥ )

2

m Exponential growth of the amplitude as function of rapidity;

2
m As compared to DGLAP which resums o;C In %
0 46/78
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Derivation of BFKL evolution

Dipole model. [Mueller, 94]
Consider a Bremsstrahlung emission of soft gluon z;, < 1,

P, (1- P~k
1y
€P* k.
and use LC gauge ¢ = (¢7 = 0,¢ = % )
. ra€l kL
M(kj_) = —ZlgTa?
1

m g — gg vertex and Energy denominator.
m Take the limit k;r — 0.

m Similar to the derivation of Py, (§).
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% The dipole splitting kernal

The Bremsstrahlung amplitude in the coordinate space

Ty

Mxs —21) = / Pl L0 M (k)

= M(xL —z1)

kL b
Use / &k, “k%e'ki br o omtt 2L

€L

— T €L (x1 —2z1)

(xr —z1)?

b

2
L

)
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The dipole splitting kernal

Introduction
to QCD and
Jet

Consider soft gluon emission from a color dipole in the coordinate space (x1,y1)

Bo-Wen ZL L

5 / % /
Xiao , ,
' '
| ZL ' zZy
' '
\ \
) YL N YL

aler-(xL—z1) er-(vo *ZL):|
M(x1,z0,y1) = 4ngT -
(x1,21,y1) = 4mg { (1 —z1)? (yr —z1)?

‘ . 2
21 Ry =9 @ _ _aN P
o Yyi éb‘ ‘6% é’?ﬂﬂ)“% — 7 (21—21) (yr—21)
The BFKL

e m The probability of dipole splitting at large N, limit

Balitsky-

;N (xp —y1)? 2 . dk;r
dP% itting — d dY th dY = —
splitting 272 (xL —z1 )% (L —z0)? o e k;'

m Gluon splitting < Dipole splitting.
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BFKL evolution in Mueller’s dipole model

[Mueller; 94] In large N. limit, BFKL evolution can be viewed as dipole branching
in a fast moving gg dipole in coordinate space:

Yo <<Y1 << Y, <<y

n(r,Y) dipoles of size r. BFKL Pomeron
The T matrix (T = 1 — § with S being the scattering matrix) basically just counts
the number of dipoles of a given size,

T(r,Y) ~ ain(r,Y)

e Csion is g, Gm0P
m The probability of emission is s T

m Assume independent emissions with large separation in rapidity.
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BFKL equation

Consider a slight change in rapidity and the Bremsstrahlung emission of soft gluon
(dipole splitting)

d g

HT(x,y;Y) =

Qs

2w

/ 77

(x—y)?

x=2z—y)

(T(x,zY) +T(z,y;Y) = T(x,y; )]
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% Kovchegov equation

[Kovchegov; 99] [Mueller; 01] Including non-linear effects: (T =1 — S)

T

Yy J ggi ) Cﬂ& Z
as _ IS
¢ (@
aN, x—v)?
orse—ny) = G [ st S~ i) = S )
aN, x—y)?
6yT(x - Y) = o2 /dzz(x_(z)zﬁ

X |Tx=5Y)+T(—yY)—Tx—yY) =T —5Y)T(z—y;Y)

saturation

m Linear BFKL evolution results in fast energy evolution.

m Non-linear term => fixed point (7 = 1) and unitarization, and thus saturation.
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Phase diagram in QCD

Y=In1/x

InQ2(Y)=AY

Dilute system

DN

BFKL

—

DGLAP

&
|

2
InAdep InQ?

m Low Q7 and low x region = saturation region.

m Balitsky-Kovchegov equation is the non-linear small-x evolution equation
which describes the saturation physics.
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evolution

[Munier, Peschanski, 03] Consider the case with fixed impact parameter, namely,
T, is only function of » = x — y. Then, transforming the B-K equation into

momentum space:

BK equation: ’ T = axsrkL(—0,)T — aT? ‘with

Diffusion approximation =

% Balitsky-Kovchegov equation vs F-KPP equation

a=

aN,
T

F-KPP equation: ’ Auu(x, 1) = Bru(x, 1) + u(x, 1) — ' (x, 1) ‘

mu=T,aY =t o= log(kz/k(z)) = x, with ko being the reference scale;

m B-K equation lies in the same universality class as the F-KPP
[Fisher-Kolmogrov-Petrovsky-Piscounov; 1937] equation.

m F-KPP equation admits traveling wave solution u = u (x — vr) with minimum

velocity;

m the non-linear term saturates the solution in the infrared.
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Geometrical scaling

Geometrical scaling in DIS:
T(rY) = T[]

B ) 5 Ve log” (P07 (Y))
= [Pe o] e | SEr e

Scaling window

m All data of a,o, ? when x < 0.01 and %2 = 0* < 450GeV? plotting as function

of 7 = Q%/Q? falls on a curve, where Q7 = ( )0 » GeV2 with xo = 3 x 107%;
m scaling window: |log (P07 (Y)) | <

)

W' L L L L \

[Golec-Biernat, Stasto, Kwiecinski; 01]
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Forward hadron production in pA collisions

[Dumitru, Jalilian-Marian, 02] Inclusive forward hadron production in pA collisions

do_pA—)hX 1 dZ B
dzll;id))h = / 2 prCIf(xm W)F (k1 )Dyyg(z, 1) + xp8 (xpy 1) F (kL) Dy (2, p2)
T f
P + A — h(y,pj_) + X . Albaete-Marquet, 2010
d-Au - odEsket

SR
Ak K03

ENId/Pp, (GeV?)
T

m Caveats: arbitrary choice of the renormalization scale ;. and K factor.
m NLO correction? [Dumitru, Hayashigaki, Jalilian-Marian, 06; Altinoluk,
Kovner 11] [Chirilli, Xiao and Yuan, 12]

w Flko) = f Pxidy, e—ikL()u—yL)Sy)(xl,)l)

(am)?
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Why do we need NLO calculations?

Large x: valence quarks Small x: Gluons, sea quarks
Ph-—>jet+X

Ve=1800GeV E,=70GeV 2<lyi<3

1000

10
——eniO

GoldydE, (Pb/GeV)

m Due to quantum evolution, PDF and FF changes with scale. This introduces
large theoretical uncertainties in xf(x) and D(z). Choice of the scale at LO
requires information at NLO.

m LO cross section is always a monotonic function of y, thus it is just order of
magnitude estimate.

m NLO calculation significantly reduces the scale dependence. More reliable.
m K= % is not a good approximation.

m NLO is vital in establishing the QCD factorization in saturation physics.
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% NLO Calculation and Factorization

Factorization is about separation of short distant physics (perturbatively
calculable hard factor) from large distant physics (Non perturbative).

o~ xf(x) @ H®Du(z) @ Fky)

NLO (1-loop) calculation always contains various kinds of divergences.

m Some divergences can be absorbed into the corresponding evolution equations.

m The rest of divergences should be cancelled.

Hard factor ) N
H=Hig + 5 Hyio+
should always be finite and free of divergence of any kind.

NLO vs NLL  Naive o expansion sometimes is not sufficient!

LO | NLO | NNLO
LL 1 | aL | (L)
NLL Qo ay (asL)

Evolution — Resummation of large logs.
LO evolution resums LL; NLO = NLL.



Factorization for single inclusive hadron productions

Introduction 1 1 1
o Systematic factorization for the p + A — H + X process

Jet [G. Chirilli, BX and F. Yuan, Phys. Rev. Lett. 108, 122301 (2012)]

Bo-Wen

Xiao Aot AThEX dz dx
TS 55 .. / [dm.nmms,s, el
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Collinear

Factorization
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equation L.
Transverse Finite hard factor
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Dependent
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Factorization

Introduction
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The BFKL

EW"L:"O“ Rapidity Divergence Collinear Divergence (P) Collinear Divergence (F)
equation

T
T

Balitsky-

Kovehegov m Typical integrals in real contributions:

evolution

Forward

1 ) 2
o / gt te / &G igirs
pA Collisions (] — g ) qz

Sudakov factor

Rapidity D. Collinear D. 61/78
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The subtraction of the rapidity divergence

We remove the rapidity divergence from the real and virtual diagrams by the
following subtraction:

2. 2
_ (0) _agNe d*x, d?y, d?b ik (s =)
Flkr) = F7(kv) ) 1o / EE e
X (X — yJ‘)Z S(Z)( ) — S(4)( b )
(xL =b1)*(yL —by)? L YL oL VL)

Decomposing the dipole splitting kernel as

(xp —y1)? 1 1 2(x1 —b1)-(yL —b1)

(L —bi)?(yr —b1)®>  (xi —byi) " (yvi—b1)* (xL—b1)*(yL—b1)?

with the first two terms removed from the virtual diagrams while the last term
removed from the real diagrams. Comments:

m This divergence removing procedure is similar to the renormalization of parton
distribution and fragmentation function in collinear factorization.

m Splitting functions becomes after the subtraction.

(l & )
m Rapidity divergence disappears when the k| is integrated.
Unique feature of unintegrated gluon distributions.



The subtraction of the collinear divergence

:g'gg"];gzx Remove the collinear singularities by redefining the quark distribution and the quark
Jet fragmentation function as follows
Bo-Wen
Xiao la "d X
g = " -5 [ Lop (1),
€ 2m J, & 13
QCD Basics — — laY(/’L) ] ﬁc /P (E)
: - ¢ 2r J, €T ’
with
) 1+& 3
Paq(§) = ﬁ + 55(1 -§).
W_Jr/ —
Real Virtual
Comments:

m Reproducing the DGLAP equation for the quark channel. Other channels will
complete the full equation.

m The emitted gluon is collinear to the initial state quark =
Renormalization of the parton distribution.

Forwar
Hadron

e m The emitted gluon is collinear to the =
Renormalization of the fragmentation function.




Hard Factors

Introduction
10 QCD and For the ¢ — ¢ channel, the factorization formula can be written as
Jet
Bo-Wen B opTA—h+X de dx dz"'Ldz‘"J_ ) o )
Xiao —_— = /ffﬁquyuD z,u)/i’{s()x )y H()Jr #{D
. ] 23 (x 1)Dp /4 ( =) Yy (oy1) Mg
Aoy (@) m
+/ e AURLIR u_)*%qq
QCD Basics
o with Hg{); — kLTl §(1 — £)and
Observables
Collnea
Factorization 2 . LA . 2
and DLAP 1 = P m 0 (TRl TR ) agps(1— e RL L 1 0
equation 1 2 2 g2 2 K2
L HEE

Transverse

Momentum . 1 2 _ 1+ 52 n (l _ £)2
Dependent — (2Cp — N¢) otk Ty +¢ Iy — ( ( )
(TMD or k,) — —
oy ),
. I LLe? ., -
WD = et [P0 2@ 1t e
g =&y & (L —br)? (L —br)
he . . P
e o, 14e? =&k (v —by) @ L, L
—o( = - by — ot

i s -6 [ ae o i 8@y —v) [
Balitsky- + 1 YL i
Kovchegov
evolution - d? . — .
o where Ty = [T -0k L G T I S R TR O
Forward 2 (&, - ’J_)2 ) 2
- 1 1 1

Productions in
PA Collisions

Sudakov factor
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% Numerical implementation of the NLO result

IHEQI o Single inclusive hadron production up to NLO
to QCD and
Jet
do = [ @D © R k) @ HO
+2 [ ) @ Dy(z) @ F2 @ HY
o a b (N)ab ab *

QCD Basics

e

Consistent implementation should include all the NLO « corrections.
m NLO parton distributions. (MSTW or CTEQ)
NLO fragmentation function. (DSS or others.)

Use NLO hard factors. 4 channels g — ¢, ¢ — 8,8 — q(g) and g — g

L]
|
m Use the one-loop approximation for the running coupling
L]

Forwar rcBK evolution equation for the dipole gluon distribution [Balitsky, Chirilli,
Prsdcions 08; Kovchegov, Weigert, 07]. Full NLO BK evolution not available.

(. Saturation physics at One Loop Order (SOLO). [Stasto, Xiao, Zaslavsky, 13]
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Sudakov factor

BRAHMS 5 = 2.2,3.2

[Gev-2)

The abrupt drop of the NLO correction when p; > Q, was really a surprise!
What is going wrong?
m Saturation formalism? Dilute-dense factorization? Not necessarily positive
definite! Does this indicate that we need NNLO correction? - - -

m Some hidden large correction in 5* ‘(\”‘O?

66

78



Numerical implementation of the NLO result

Introduction [Stasto, Xiao, Zaslavsky, 13, accepted for publication in PRL]

to QCD and
Jet

BRAHMS = 22,32 w0 F T Yo

STAR =14

Bo-Wen
Xiao

107k

— 100k

Introduction
to QCD and
Jet

5 |
il
10

CD Basic
QCD Basics .

Jets and
Related N 10-7 . . . . .
Observables T2 3 T2 3 Wy 16 18 2

Collinear Ppi[GeV] pL[GeV] p1[GeV] PalGeV]

Factorization LHC 7 = 6.375 ‘*LO = NLO (fixed) -~-NLO (running)
and DGLAP
equation

100F T T T 102 ET T T T T T

Transverse 0
Momentum
Dependent
(TMD or k,)
Factorization

107 E - LHC at 1 = 6.375

Introduction

to Saturation
Physics 10°°

The BFKL ek
evolution E
equation p[GeV] (n/ps)?

8

Balitsky-
Kovehegov

colution m Agree with data for p < Qy (y), and reduced scale dependence, no K factor.

Forward
Hadron

- m For more forward rapidity, the agreement gets better and better.
A Collisions

Sttt i m Additional plus-function (threshold) resummation ? Similar to thrust 7 — 1.
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Introduction to QCD and Jet

m QCD Basics

m Jets and Related Observables

m Collinear Factorization and DGLAP equation

m Transverse Momentum Dependent (TMD or ;) Factorization

Introduction to Saturation Physics

m The BFKL evolution equation

m Balitsky-Kovchegov evolution

m Forward Hadron Productions in pA Collisions
m Sudakov factor
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equation
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LO calculation for Higgs production in pA collisions

[A. Mueller, BX and F. Yuan, 12, 13] The effective Lagrangian:

1 a  papv
Eeﬁ = _Zg¢¢FH,,F w

- — =

Multiple gluon
exchanges

dU(LO) dzdele ik -(x) —x') WW /
=~y e AL AL i “(x X
dyd?k | 0'0/ (2m)2 e xgp(x)Sy " (x1,x1 ),
m 0o =g,/g°32(1 —€) withe = —(D — 4)/2;
m P (esy) = = (Tr [02 UG UT 0T UV )]

m Only initial state interaction is present. = WW gluon distribution.
m For AA collisions, there exists the true k; factorization.
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Some Technical Details

[A. Mueller, BX and F. Yuan, 12, 13] Typical diagrams:

m High energy limit s — oo and M> >> k% .  Use dimensional regularization.

m Power counting analysis: take the leading power contribution in terms of

2
K

M2



Some Technical Details

Introduction [A. Mueller, BX and F. Yuan, 12, 13]

to QCD and

Jet .

by .y .y
Bo-Wen vy nd N N

Xiao x) 4 b, 4 b,
Introduction
to QCD and
Je
QCD Basics

The phase space (17,17, 1, ) of the radiated gluon can be divided into three regions:
m (a) gluon is collinear to the incoming proton. = DGLAP evolution.

F
¢
C
F ation . ~ . . cn

nd DOLAT Subtraction of the collinear divergence and choose ;> = i

Transverse

1 ww ) N (‘S . B It
€‘S (xim\'L)//)&‘\’(f) ® X8 Xy Ri Wlth E 7 PA
Introduction

to Saturation

Physics m (b) gluon is collinear to the incoming nucleus. = Small-x evolution.
The BFKI

arthes Subtraction of the rapidity divergence: = non-linear small-x evolution
. equation

1
xgp(x)/o %/KDMMX(X)SWW(XJ_:)}J-)

Productions in
pA Collisions

Sudakov factor

(c) gluon is soft. = Sudakov logarithms.
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% Separation of the small-x logarithm and Sudakov logarithms

Introduction

t0 QCD and by
Jet
Bo-Wen o
Xiao

(a)

m Consider the kinematic constraint for real emission before taking s — co, and
note that x,x,s = M*

1 2
d » 1 M
2 ézln(?) =In— +1In—.
$§ s Xg s

m Now we can take s — oo and x; — 0, but keep x,x,s = M>.
m The Sudakov contribution gives

25/ L oL RL 1 In %2
(2m)—2 EE

I I U V- VA Y AN B Vo) < I
= —|s5—-——-Ihh—+4+z({ln— )] —z(In - =
4 (e e pr o 2 u? 2 ct 12

The BFKI

Sudakov factor
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evolution

Forward

Sudakov factor

Some Technical Details

m Subtraction of the UV-divergence: (Color charge renormalization)

as 1 M? . 11 N
ENB [—— +In— th Bp=— — L.
™ Ao ( euv +in ,uz) with - fo 12 6N.

m Real diagrams =

+2N.

s

m Virtual graphs =

Qs 1 1M 1 M 7 M?
=N, |—= 71 — —5In — = In—
{ + Z 2 +2+12+5°nu2

m All divergences now cancel and the remaining contribution is

) 1 M2R2 M2R2 2
gM(—fl2 + foln +7T—).
s 2 Co Co 2

2\ 2 212 2 2
1 1, M 1 M- 1 M-"R7 T
L P T — (1 -,
e e“2+2( ) 2(“ cg> 12]



Sudakov factor

e Final results:
et m Atone-loop order: Ry =x; — x|
Bo-Wen
Xiao (LO+NLO) 2 2

do d'x1dx] g, r, 2 2 p2 \WW /

—_— = —_— = cy/R1)Sy=

O'Odydsz_ / (27_[_)2 e Xgp(xv I CO/ L) Y=In1/x, (XL,XL)

. 1 MR, MR 2
QCD Basics X |:1+$NC (,,1 2 +501 +£):| .
I T 2 ck ck 2
m Collins-Soper-Sterman resummation:

and DGLAP do. (resum) dzde X . 75

Wm«M = JO/T)ZLekLRL qud (M2, RDSY lnl/xg(xlvxj.)

2 _ Cz
X - 14+ — —N ,
ngP(xl 1% R2 ) |: + T 2 :|
S where the Sudakov form factor contains all order resummation
evolution MZ d‘LL M2
Swa(M*,RY) :/ > {Al —2+B].
c(z)/Rl H W

A=Y AD (%) wefindA® = N, and BV = —BoN..

Sudakov factor i=1
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% Probabilistic interpretation of the Sudakov double logarithms

The gluon wave function:

m Now in momentum space, the Higgs transverse momentum is fixed to be
ki ~ gL < M.

m The energetic gluon is annihilated to create the color neutral and heavy Higgs
particle, thus, other gluons in its wave function are forced to be produced.

m The Sudakov factor S is just the probability of those gluons having transverse
momentum much less than k| .
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Lesson from the one-loop calculation for Higgs productions

Introduction

to QCD and

Jet

Bo-Wen

e do(resum) dEx dY) g r Seua (M2 ,RY ) oWW

rren T B e
2
XXp8p(Xp, p~ = 1 771\/ ,
28 (Xp, RL)|:+ D) C:|

m Four independent (at LL level) renormalization equation.

m Unified description of the CSS and small-x evolution? =~ TMD and UGD share
(TMD ork,) the same operator definition.

Factorization

Define S""(R.,M;x,) = Ce ~Sua(M.RL) gV (LX) =

Y=In1/x,

The BFKI
evolution

d (resum) dz.deleJ_ ik | ‘R 2 Cs) WW
—_ =0 ="y o (), T = —-)S R, ,M;x
dydk, |kL<<M ()/ (27_()2 28 (Xps | Ri) (RL <)

Sudakov factor
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Sudakov factor for dijet productions in pA collisions and DIS

Consider the dijet productions in pA collisions:

© T TOE

Cysgg = N associated

“»\g
N\g
&

do o
dyldyzdPidsz

Comments:

H(Pi)/dzdeZyLeikL'RLe*SSL(d(PLRL)WXA(xLyyl).

m Problems get harder due to presence of both initial and final state emissions.
m For back-to-back dijet processes, M3 ~ P% > k3

C . , PR} i 1
DY 2 TLEL Gith Ry ~ —.

S =
sud 2 c(z) ki

m Empirical formula for C: C = Z, 5, where C; is the Casimir color factor of
the incoming particles. C; = Cr for incoming quarks, C; = N, for gluons.

m For heavy quarkonium production, there is also a Sudakov factor. [Qiu, Sun,
BX, Yuan, 13]
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