Heavy quark production in pA collisions from CGC

Kazuhiro Watanabe

Tokyo U, Komaba

NFQCD, December 19, 2013, Kyoto

collaborate with H. Fujii

Nucl. Phys. **A 915**, 1 (2013), [arXiv:1304.2221 [hep-ph]] Nucl. Phys. **A 920**, 78 (2013), [arXiv:1308.1258 [hep-ph]]

The saturation momentum scale $Q_s^2(x)$ emerges dynamically as a semi-hard scale below which virtuality $Q^2 < Q_s^2(x)$, coherence and nonlinearity of the x evolution become important: Color Glass Condensate.

Color Glass Condensate (CGC)

see e.g. lancu, Leonidov and McLerran, arXiv:hep-ph/0202270, lancu and Venugopalan, arXiv:hep-ph/0303204

- McLerran-Venugopalan (MV) model

McLerran and Venugopalan, PRD49,50 (1994)

 Large Bjorken-x partons : random color sources (gaussian dist.) Small-x partons : classical fields produced from the sources

> -multiple scattering -no rapidity dependence

valence Field

Quantum evolution of MV model : CGC

Source dist. func. follows IIMWLK renormalization group eqn.

CGC provides us the framework to study the parton multiple scattering and quantum evolution effects.

 ${\sf J}/\psi$ and D meson productions from the CGC in pA collisions.

Nuclear modification factor:

$$R_{ extsf{pA}} = rac{dN_{ extsf{pA}}}{N_{ extsf{coll}}\;dN_{ extsf{pp}}}$$

Outline

- 1. Introduction
 - Approach in large-N_c
 - Quantum evolution
- 2. Quarkonium production
- 3. Heavy meson production
 - Heavy quark pair correlation

Introduction

Proton-nucleus (pA) collisions

pA collisions are regarded as a controlled baseline in the context of both heavy ion collision and QGP physics and playing a crucial role to separate cold nuclear matter (CNM) effects from hot plasma effects.

- CNM effects
 - Multiple scattering of partons
 - Modification of the initial parton distribution (e.g. shadowing)
 - Parton saturation effects

Why heavy quarks??

Heavy quarks are produced only in initial hard process and sensitive to the gluon distribution in hadron.

- In AA collisions:
 - Quarkonium is recognized as a thermometer inside the QGP.
 - Energy loss in medium and collective flow of D and B mesons.
- In pA collisions:
 - CNM effects.
 - Provides us with an unique opportunity to investigate the parton saturation phenomenon at small Bjorken's *x* of gluon in the incoming nucleus.

$$Q^2_{sA}(x) = Q^2_{s0} A^{1/3} (x_0/x)^\lambda \sim m^2_c ~~({
m RHIC},$$
 the LHC)

We study the heavy quark production in pA collisions at collider energies in order to quantify the effects of saturation.

Approach

For mean bias event in dilute-dense colliding system:

Quantum evolution of dipole amplitude

Nonlinear BK equation

$$-\frac{d}{dY}S_{Y}\left(r_{\perp}\right) = \int dr_{1\perp} \, \mathcal{K}(r_{\perp},r_{1\perp}) \left[S_{Y}\left(r_{\perp}\right) - S_{Y}\left(r_{1\perp}\right)S_{Y}\left(r_{2\perp}\right)\right]$$

• $S_Y(x)$ is the eikonal scattering matrix element, probed by a quark-antiquark pair moving along the light-cone direction in the background gauge field in the target nucleus.

$$S_{Y}(\boldsymbol{x}_{\perp}) \equiv \frac{1}{N} \operatorname{tr} \left\langle \tilde{U}(\boldsymbol{x}_{\perp}) \tilde{U}^{\dagger}(\boldsymbol{0}) \right\rangle_{Y} \xrightarrow{U(\mathbf{x}_{\perp})} \overrightarrow{\boldsymbol{0}} \overrightarrow{\boldsymbol{0$$

• The large-N_c limit reduces the JIMWLK equation to the BK equation which is very convenient for numerical computations.

rcBK equation

Running coupling kernel [Balitsky (2007)]

$$\mathcal{K}(r_{\perp}, r_{1\perp}) = \frac{\alpha_s(r^2)N}{2\pi^2} \left[\frac{1}{r_1^2} \left(\frac{\alpha_s(r_1^2)}{\alpha_s(r_2^2)} - 1 \right) + \frac{r^2}{r_1^2 r_2^2} + \frac{1}{r_2^2} \left(\frac{\alpha_s(r_2^2)}{\alpha_s(r_1^2)} - 1 \right) \right]$$

rcBK equation includes a part of NLO contribution.

• Constrained initial condition: [AAMQS (2011)] Global fit analysis of the compiled HERA e+p data at $x < x_0 = 0.01$ using the rcBK equation with the initial condition at $x = x_0$

$$S_{Y0}(r_{\perp}) {=} {\exp } \left[{-rac{(r^2 Q_{s0,\mathbf{p}}^2)^{\gamma}}{4} \ln \! \left(rac{1}{\Lambda r} {+} e
ight)}
ight]$$

set	$Q^2_{s0,\mathrm{p}}/\mathrm{GeV}^2$	γ
g1118	0.1597	1.118
MV	0.2	1

 $\blacksquare \ Q^2_{s0,A} = A^{1/3} Q^2_{s0,p}$ in the nucleus for MB event.

Unintegrated Gluon Distribution (uGD)

- The peak position (*i.e.*, the saturation scale) drifts with evolution rapidity Y.
- The number of gluon at lower-k_⊥ is strongly suppressed due to the nonlinear gluon merging, while more gluons are emitted in the large k_⊥ region by the BFKL cascade.

rcBK phenomenology 1 Speed of evolution : $\lambda = \frac{d \ln Q_s^2(Y)}{dY}$ with $Y = \ln(1/x)$ [Albacete (2007)]

* HERA DIS : $\lambda \approx 0.288$ [Golec-Biernat, Wusthoff (1998)]

K. Watanabe (Tokyo Univ.) Heavy quark production in pA collisions from CGC

rcBK phenomenology 2

Charged particles multiplicity [Albacete, Dumitru (2010)]

Pair production amplitude

 Multiple scattering effect of back ground gauge field on heavy quark pair production after the quark pair creation (Left) and before (Right).

Multi parton correlator in the nucleus

- Sum rule: $\int_{k_{\perp},k'_{\perp}} \phi_A^{q\bar{q},q\bar{q}} = \int_{k_{\perp}} \phi_A^{q\bar{q},g} = \phi_A^{g,g}.$
- 4-point correlator (Leftmost) is reduced to 3-point correlator in the large-N_c limit.

$$\phi_{A,Y}^{q\bar{q},g}(l_{\perp},\!k_{\perp})\!=\!\frac{\pi R_A^2 N l_{\perp}^2}{4\alpha_s}\; \tilde{S}_Y(k_{\perp})\; \tilde{S}_Y(l_{\perp}\!-\!k_{\perp})$$

2-point correlator is just the uGD.

Quarkonium production

Color Evaporation Model

• J/ ψ production cross section reads

$$rac{d\sigma_{
m J/\psi}}{d^2P_{
m L}dy} = F_{
m J/\psi} \int_{4m_c^2}^{4M_D^2} dM^2 rac{d\sigma_{car c}}{d^2P_{
m L}dM^2dy}$$

where $m_c~(M_D)$ is the charm quark (D meson) mass and $F_{{
m J}/\psi}=0.02$ as representative values.

• A phenomenological constant $F_{\mathrm{J}/\psi}$ represents the non-perturbative transition rate for the charm pairs, produced in the invariant mass range $M \in [2m_c, 2M_D]$, to bound into a quarkonium.

Kinematical regions of $x_{1,2}$

LHC energy

At forward rapidity, it probes x_2 as low as $\sim 10^{-4}$ to 10^{-5} .

*Take account that in the small x_2 region but large P_{\perp} , the gluon with large $k_{1\perp}$ in the proton can reduces the saturation effect.

Cross section in pA

- Spectrum shows the harder slope at large P_⊥: BFKL tail of uGD.
- The collinear approximation on the proton side gives a better description of the data.
- Parameter dependence of the absolute value is indispensable.

Rapidity dependence of $oldsymbol{R}_{ extsf{pA}}$ of J/ψ

At the LHC energy R_{pA}(y) is further suppressed, which reflects through CEM the stronger effects of multiple scatterings and gluon saturation in the quark-pair production process.

(*The band includes uncertainty for $m_c=1.2~{\rm GeV}$ to 1.5 GeV and $Q^2_{s0,A}=(4-6)Q^2_{s0,p}.)$

Heavy meson production

Single heavy meson production

$$rac{d\sigma_h}{d^2 p_{h\perp} dy} = f_{q
ightarrow h} \int dz rac{D^h_q(z)}{z^2} rac{d\sigma_q}{d^2 q_\perp dy}$$

Kartvelishvili fragmentation function: $D_q^h(z) = (\alpha+1)(\alpha+2)z^{\alpha}(1-z)$

The only parameter: α is set to 3.5 (13.5) for D(B). (*No factorization scale dependence.)

K. Watanabe (Tokyo Univ.) Heavy quark production in pA collisions from CGC

Kinematical coverage

- x_1 and x_2 contributing to single charmed meson production at $p_{h\perp}=2$ GeV and y=0 at $\sqrt{s}=200$ GeV are larger than $x_0=0.01$
- Small x gluons around $10^{-3} \sim 10^{-4}$ dominate the lower $p_{h\perp}$ production.

$R_{ extsf{pA}}(y)$ of D meson

- **J**/ ψ production is more suppressed than D meson.
- The produced quark pair experiences the multiple scatterings with the gluons in the target and is kicked beyond the invariant mass threshold though the CEM.

Azimuthal angle correlation between $Dar{D}$

Pair production of heavy meson covers wider kinematic region of the participating partons than quarkonium production.

$$CP[\Delta\Phi] = rac{2\pi}{N_{
m tot}} \int p_{h\perp} dp_{h\perp} p_{ar{h}\perp} dp_{ar{h}\perp} dy_h dy_{ar{h}} rac{dN_{har{h}}}{d^2 p_{h\perp} d^2 p_{ar{h}\perp} dy_h dy_{ar{h}}}$$

 \boldsymbol{N}_{tot} is the pair multiplicity per event integrated over the same kinematic region and further integrated over the angle between the pair.

Azimuthal angle correlation between $Dar{D}$

- Gluon bremsstrahlung and multiple scatterings, which are encoded in $\phi_n^{q\bar{q},g} \rightarrow$ near-side peak.
- The away-side peak is gradually suppressed in pA collisions, while the near-side peak is slightly enhanced due to the stronger multiple scatterings and saturation effects.

Summary

- Effects of multiple scatterings and saturation on heavy quark production in pA collisions can be studied systematically in the CGC framework.
- R_{pA} of J/ ψ and D meson, and also $D\bar{D}$ correlation in pA collisions can provide the valuable information of saturation effects in the heavy nucleus.
- Outlook
 - NLO corrections (e.g. Sudakov factor) [Mueller, Xiao, Yuan (2013)]
 - NRQCD matching [Kang, Ma, Venugopalan (2013)] [Qiu, Sun, Xiao, Yuan (2013)].

Backup

Backup

K. Watanabe (Tokyo Univ.) Heavy quark production in pA collisions from CGC

$oldsymbol{P}_{ot}$ dependence of $oldsymbol{R}_{ extsf{pA}}$ of J/ψ

R_{pA} of J/ ψ production is suppressed at low P_{\perp} .

Broadening in medium

$$\Delta \langle P_{\perp}^{2} \rangle_{\mathsf{pA}} \equiv \langle P_{\perp}^{2} \rangle_{\mathsf{pA}} - \langle P_{\perp}^{2} \rangle_{\mathsf{pp}} = \frac{\int d\sigma_{\mathsf{pA}} P_{\perp}^{2}}{\int d\sigma_{\mathsf{pA}}} - \frac{\int d\sigma_{\mathsf{pp}} P_{\perp}^{2}}{\int d\sigma_{\mathsf{pp}}}$$

- The measured value of $\Delta \langle P_{\perp}^2 \rangle_{dAu}$ at RHIC seems to be smaller by a factor of 5 than our results, if we naively translate $Q_{s0,A}^2$ to the centrality parameter N_{coll} evaluated for dAu collisions.
- At $\sqrt{s} = 5.02$ TeV, the mean momentum of J/ ψ as moving to the forward-rapidity region.

K. Watanabe (Tokyo Univ.) Heavy quark production in pA collisions from CGC

Azimuthal angle correlation between $D\bar{D}$

