Chiral symmetry breaking patterns in the $U(n) \times U(n)$ meson model

Gergely Fejős

Theoretical Research Division Nishina Center RIKEN

New Frontiers in QCD 2013, Kyoto

 U(n) × U(n) meson model is an effective theory of QCD (for n = 3):

 $\mathcal{L} = \partial_{\mu} \mathcal{M} \partial^{\mu} \mathcal{M}^{\dagger} - m^{2} \operatorname{Tr} \left(\mathcal{M} \mathcal{M}^{\dagger} \right) - g_{1} [\operatorname{Tr} \left(\mathcal{M} \mathcal{M}^{\dagger} \right)]^{2} - g_{2} \operatorname{Tr} \left(\mathcal{M} \mathcal{M}^{\dagger} \mathcal{M} \mathcal{M}^{\dagger} \right)$

- \rightarrow two couplings \Rightarrow no stable IR fixed point of the RG-flow
- \rightarrow famous example of fluctuation induced first order transition
- RG-analysis does not tell anything about the symmetry breaking pattern
 - \longrightarrow it is usually *assumed* to be $U_L(n) \times U_R(n) \longrightarrow U_V(n)$
 - → (probably) based on the Vafa-Witten theorem: "No vector symmetries can be broken spontaneously in vector-like gauge theories."
- Other scenarios also appeared in the literature:

$$\longrightarrow U_L(3) \times U_R(3) \longrightarrow U_V(2) \\ \longrightarrow U_L(3) \times U_R(3) \longrightarrow U_L(2) \times U_R(2)$$

- Searching for new local minima of the effective potential in an extended background: $\langle M \rangle = v_0 T^0 + v_8 T^8$
- Calculation of the field equations at classical level

$$0 = \frac{\partial V}{\partial M} \bigg|_{\mathbf{v}_0, \mathbf{v}_8}$$

 \longrightarrow 5 independent set of solutions for v_0 , v_8

- \rightarrow usual minimum: $v_0 \neq 0$, $v_8 = 0$ [$U_V(n)$ breaking]
- \rightarrow new minimum: $v_0 \neq 0$, $v_8 \neq 0$ [? breaking]
- Surprisingly the spectrum is the same in both cases
 → no new type of symmetry breaking!

 New local minima of the effective potential can always be generated by axial transformations from <*M*>~ 1:

$$<\!M\!> \longrightarrow A^{\dagger} <\!M\!> A^{\dagger} \equiv U <\!M\!>$$

$$\boldsymbol{U} = \sum_{i \in \text{diag}} \, \tilde{\boldsymbol{v}}_i \, \boldsymbol{T}^i$$

 \rightarrow intesection of U(n) and the center of its Lie-algebra

• A quite simple recursion can be derived for coefficients $\{\tilde{v}_i\}$ $\longrightarrow 2^n$ different vacua can be obtained

 \longrightarrow all show a breaking pattern $U_L(n) \times U_R(n) \longrightarrow U_V(n)$

- in the stability region relevant for QCD (i.e. $g_2 > 0$) Vafa and Witten's theorem remains valid
- vacuum structure: more complicated than thought before