Charm quark diffusion constant and relaxation time in the deconfined phase in quenched lattice QCD

NFQCD 2013@ Kyoto, Japan A. Ikeda, M. Asakawa, M. Kitazawa(Osaka Univ.)

motivation

• Elliptic flow of heavy quark is observed at the RHIC and LHC

 \rightarrow heavy quarks flow with medium

Charm transport property is important.

• Our purpose is to assume the spectral function structure from relaxation time approximation and to extract transport coefficients from lattice simulation.

Formalism

Kubo formula for diffusion constant

$$D = \frac{1}{\chi_{00}} \lim_{\omega \to 0} \sum_{i=1}^{3} \frac{\rho_{ii}(\omega, T)}{\omega}$$

•At under critical temperature low energy structure of spectral function is zero .

→Subtract reconstructed correlator from correlator.

 $\Delta G(\tau, T, T') = G(\tau, T) - G_{rec}(\tau, T, T')$ T=2.33Tc, T'=0.78Tc

Assumption of spectral function $\Delta \rho = A \frac{\omega \Gamma}{\omega^2 + \Gamma^2} - Z \delta (\omega - m_{J/\psi})$

 J/ψ is melted above Tc

Result

The smaller lattice : error is larger than the mean value.

The larger lattice:

 $3 \le \hat{\tau} \le 16$ is most statistically significant $2\pi DT = (3.4 \pm 0.5) \times 10^{-3}$ $\tau = 0.12 \pm 0.02$ fm

Lσ =2.50fm A				Gamma		Z	
	use tau	mean[MeV ²]	error/mean	mean[GeV]	error/mean	mean[GeV ³]	error/mean
	2-16	1957	0.259	2.260	0.270	0.247	0.138
	3-16	1536	0.154	0.224	0.208	0.224	0.073
	4-16	938	0.182	0.563	0.629	0.188	0.077
	5-16	194	11.410	0.002	3.676	0.177	0.008

To use our assumption we might have to use more large space size lattice

Lσ=1.25fm

