Shear viscosity in a large- $N_{\rm c}$ NJL model from Kubo formalism - Advertisement -

 $\begin{array}{c} {\sf Robert \ Lang}^{1,2} \\ {\sf Tetsuo \ Hatsuda}^2 \quad {\sf Wolfram \ Weise}^{3,1} \end{array}$

¹Physik Department T39, Technische Universität München, Germany ²Theoretical Research Division, Nishina Center, RIKEN, Wakoshi, Japan ³ECT*, Villa Tambosi, Villazzano (TN), Italy

> Yukawa Institute for Theoretical Physics Kyoto, Japan

> > December 3, 2013

Temperature dependence of shear viscosity

[Niemi, Denicol, Molnár, Rischke: PRL 106 212302 (2011)]

Aim of my work:

Microscopic calculation of the $(T,\mu)\text{-}$ dependence of η/s within a large- $N_{\rm c}$ NJL model

NJL model: large- N_{c} analysis

 $\label{eq:constraint} \begin{array}{c} \mbox{QCD building blocks: } A \mbox{ four-gluon vertices,} \\ B \mbox{ three-gluon vertices, and } C \geq N_{\rm f} \mbox{ quark-gluon vertices} \end{array}$

$$\Rightarrow$$
 Any connected diagram obeys: $A+\frac{1}{2}(B+C)=N_{\rm f}-1+L$

$$N_{
m c}$$
 scaling of a $2N$ -vertex : $rac{1}{N_{
m c}^{N-1+L}}$ e.g. $G\simrac{1}{N_{
m c}}$

NJL model: large- N_c analysis

seed the second se

QCD building blocks: A four-gluon vertices, B three-gluon vertices, and $C \ge N_{\rm f}$ quark-gluon vertices

$$\Rightarrow$$
 Any connected diagram obeys: $A + \frac{1}{2}(B + C) = N_{\rm f} - 1 + L$

$$N_{
m c} \, {
m scaling} \, {
m of} \, {
m a} \, \, 2N {
m -vertex} : \ \ {1 \over N_{
m c}^{N-1+L}} \qquad {
m e.g.} \, \, G \sim {1 \over N_{
m c}}$$

Application: rediscover standard approaches in many-body physics

Shear viscosity from Kubo formula

Shear viscosity η relates to a four-point correlation function $\langle T_{\mu\nu}(t, \vec{x})T^{\mu\nu}(0)\rangle_{\rm ret}$:

$$\eta[\Gamma(p)] = \frac{64N_{\rm c}N_{\rm f}}{15\pi T} \int_{-\infty}^{\infty} \frac{{\rm d}\epsilon}{2\pi} \int_{0}^{\infty} \frac{{\rm d}p}{2\pi} \frac{p^6 m^2 \Gamma^2(p) n_{\rm F}(\epsilon) [1 - n_{\rm F}(\epsilon)]}{\left[\left(\epsilon^2 - p^2 - m^2 + \Gamma^2(p)\right)^2 + 4m^2 \Gamma^2(p)\right]^2}$$

Shear viscosity from Kubo formula

Shear viscosity η relates to a four-point correlation function $\langle T_{\mu\nu}(t,\vec{x})T^{\mu\nu}(0)\rangle_{\rm ret}$:

$$\Pi(\omega_n) = \gamma_2 \bullet \bigcirc \gamma_2 = \mathcal{O}(N_c^1) + \mathcal{O}(N_c^0) + \dots$$

$$\eta[\Gamma(p)] = \frac{64N_{\rm c}N_{\rm f}}{15\pi T} \int_{-\infty}^{\infty} \frac{{\rm d}\epsilon}{2\pi} \int_{0}^{\infty} \frac{{\rm d}p}{2\pi} \frac{p^{6}m^{2}\Gamma^{2}(p)\,n_{\rm F}(\epsilon)[1-n_{\rm F}(\epsilon)]}{\left[\left(\epsilon^{2}-p^{2}-m^{2}+\Gamma^{2}(p)\right)^{2}+4m^{2}\Gamma^{2}(p)\right]^{2}}$$

perturbative aspects: for "small" Γ we might perform a Laurent-series expansion of $\eta[\Gamma(p)]$:

$$\eta[\Gamma] = \frac{A_{-1}}{\Gamma} + A_0 + A_1\Gamma + A_2\Gamma^2 + \dots$$
$$\Rightarrow \ \eta \cdot \Gamma = A_{-1} + A_0\Gamma + A_1\Gamma^2 + A_2\Gamma^3 + \dots$$

Shear viscosity from Kubo formula

Shear viscosity η relates to a four-point correlation function $\langle T_{\mu\nu}(t,\vec{x})T^{\mu\nu}(0)\rangle_{\rm ret}$:

$$\eta[\Gamma(p)] = \frac{64N_{\rm c}N_{\rm f}}{15\pi T} \int_{-\infty}^{\infty} \frac{{\rm d}\epsilon}{2\pi} \int_{0}^{\infty} \frac{{\rm d}p}{2\pi} \frac{p^6 m^2 \Gamma^2(p) n_{\rm F}(\epsilon) [1 - n_{\rm F}(\epsilon)]}{\left[\left(\epsilon^2 - p^2 - m^2 + \Gamma^2(p)\right)^2 + 4m^2 \Gamma^2(p)\right]^2}$$

perturbative aspects: for "small" Γ we might perform a Laurent-series expansion of $\eta[\Gamma(p)]$:

$$\eta[\Gamma] = \frac{A_{-1}}{\Gamma} + A_0 + A_1\Gamma + A_2\Gamma^2 + \dots$$

 $\Rightarrow \eta \cdot \Gamma = \underline{A}_{-1} + A_0 \Gamma + A_1 \Gamma^2 + A_2 \Gamma^3 + \dots$

Hope to see and discuss with you at my poster...

Shear viscosity in a large- N_{c} NJL model from Kubo formalism Robert Lang^{1,3} Wolfram Weiss^{2,1}

Physik Department T39, Technische Universität München, 85747 Garching, Germany ²ECT*, Villa Tambosi, 1-38123 Villazzano (TN), Italy ⁹Quantum Hadron Physics Laboratory, RIKEN Wakoshi, Saitama 351-0198, Japan

Motivation

Heavy-ion collisions at RHIC and LHC are one possible approach to explore the QCD phase diagram [1]. In such collisions one probes the phase transition between confined hadronic matter and deconfined quarkonic matter. At the same time this a transition between phases where chiral symmetry is spontanously broken and where it is restored.

LAS for different centrality classes [2]

Comparisons between hydrodynamic simulations and the measured elliptic flow v_0 indicate that the quark-gluon plasma produced in such collisions behaves as an almost-perfect fluid. The ratio η/s of the quark-gluon plasma is the lowest value found so far in nature. It is known that a *T*-dependent shear viscosity is crucial to understand the flow coefficients measured at LHC [3].

Aim of this work: Calculate the thermal dependencies of the shear viscosity $\eta(T,\mu)$ within the NJL model.

Shear viscosity from Kubo formalism: a non-perturbative approach

In the Kubo formalism [4] the shear viscosity is expressed as imaginary part of the retarded four-point quark correlator $\Pi^{10}(p)$. At leading order [5] only ring diagrams contribute to $\Pi(\omega_m, \vec{p})$:

$$\Pi_{n} = \Pi(\alpha_n) = - O(N^0)$$

Shear viscosity and strong cutoff effects

From a purely mathematical point of view, the shear viscosity $\eta[\Gamma(p)]$ does not require necessarily a momentum-cutoff:

In order for the shear viscosity $\eta[\Gamma]$ as functional of $\Gamma(p)$ to be convergent, the asymptotic $\Gamma(p)$ should not converge to rapidly to zero: $\eta[\Gamma(p)] < \infty \iff p^{3}e^{-\beta p/2} \in o(\Gamma(p))$.

$$\Gamma_{\text{const}} = 100 \text{ MeV}$$
,
 $\Gamma_{\exp}(p) = \Gamma_{\text{const}} e^{-\beta p/8}$,
 $\Gamma_{\text{Lee}}(p) = \Gamma_{\text{const}} \frac{\beta p}{1 + (\beta p)^2}$,
 $\Gamma_{\text{Lee}}(p) = \Gamma_{\text{const}} \sqrt{\beta p}$,

We find within the NJL model a strong cutoff dependence for these four parameterizations:

Figure: Shear viscosity WITHOUT applying a mo- Figure: Shear viscosity WITH a physical NJL cutoff mentum cutoff

The perturbative sector in the NJL model and thermal effects on η/s

Only if the spectral width Γ is small enough, a perturbative treatment of $\eta[\Gamma(p)]$ is possible. Then it can be expanded in a Laurent series:

$$η[Γ] = \frac{A_{-1}}{Γ} + A_0 + A_1Γ + A_2Γ^2 + .$$

Only in the perturbative sector ladder-diagram resummation [8, 9, 10] becomes a relevant contribution to the shear viscosity. The full non-perturbative $\eta[\Gamma(p)]$ takes the whole laurent series into account