Effect of the global charge conservation on the time evolution of higher order cumulants in ultrarelativistic heavy ion collisions

Miki Sakaida, Masayuki Asakawa, Masakiyo Kitazawa (Osaka University)

Δη dependence of charge fluctuation @ALICE

Cumulants generated in QGP medium survive until the final state!?

Global charge conservation

However, the global charge conservation can also suppress cumulants!!

The effect of the global charge conservation (naïve estimate)

$$\langle (\delta N^{(\mathrm{net})})^2 \rangle_{\mathrm{obs}} = \langle (\delta N^{(\mathrm{net})})^2 \rangle_{\mathrm{equil}} \times (1 - \frac{\Delta \eta}{\eta_{\mathrm{total}}})$$

Bleicher, Jeon, Koch, PRC62, 061902, 2000

Fluctuation in QGP? or The global charge conservation?

We evaluate the effect of global charge conservation on time evolution of cumulants $\langle (Q^{(\text{net})})^n \rangle_c$ in finite volume systems!

Diffusion model for hadrons(1-dim. motion of Brown particles •)

Kitazawa, Asakawa, Ono, 2013

Probability $P(\boldsymbol{n}, \tau)$ that each cell contains n_m particles

Diffusion master equation + Boundary condition (Finite volume effect)

Initial condition for hadronization

Time evolution of cumulants of conserved charges observed in $\Delta \eta$

Δη dependence of cumulants of conserved charge

$\Delta\eta$ dependence of cumulants tells us many things !!

Further details will be provided in my poster!