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Beam energy scan at RHIC * Experimental observations:

STAR Collaboration, arXiv: 1007.2613;
1106.5902 [nucl-ex]

® Motivations:

To study QCD phase diagram at finite
baryon chemical potential: critical point
(CP), onset of de-confinement
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- Particle ratios: increasing baryon chemical
potential with decreasing beam energy (DBE),
reaching ~ 400 MeV at s¥2, = 7.7 GeV

- Dynamic charge correlations: decreasing

difference in same and opposite charges
correlations with DBE (hadronic dominance?)

- Freeze-out eccentricity: increasing with
DBE (softening of EOS?)

- Directed flow: dv,/dy changes sign (softening
of EOS?) and increasing difference in proton
and antiproton dv,/dy with DBE (hadronic
dominance?)

- Moments of net-proton distributions:
both skewness and kurtosis deviate from
HRG for s%/2, < 39 GeV (presence of CP?)

- Particle ratio fluctuations: nonzero v, ,(K/m)
(correlated emission or presence of CP?)

- Elliptic flow: breakdown of NCQ scaling
and increasing difference between particles
and anti-particles with DBE (hadronic :
dominance? chiral magnetic effect?)



Beam energy dependence of CQN scaled elliptic flow
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= Phi meson falls off trend at s/2,, = 11.5 GeV (hadronic dominance?)



Particle and antiparticle elliptic flows
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= Particle and antiparticle elliptic flows become significantly different below
s1/2, < 11.5 GeV: v,(baryon) > v,(anti-baryon), v,(K*) > v,(K’), and v,(rt*) < v, ()
" P_-integrated relative v, difference between particles and antiparticles: 63%,
44%, and 12% for (p, pbar), 53%, 25%, and 7% for (A, Abar), 13%, 3%, and 1% for
(K*K"), -15%, -10%, and -3% for (rt*,;t) at 7.7, 11.5, and 39 GeV 4



Possible explanations for different particle and antiparticle elliptic flows
® Chiral magnetic wave [Bumier, Kharzeey, Liao & Yee, PRL 107, 052303 (2011)]

* Stemming from the coupling of the density . Ne . e
waves of electric and chiral charge induced v =g b Ja =g B
by the axial anomaly in the presence of an v A

external magnetic field

— Electric quadrupole moment in QGP

— radial flow leads to decreasing positive hadron --- -->
and increasing negative hadron elliptic flows

= V,(1t*) < v, (1)

* Effects on p and p as well as K* and K™ are masked by different absorption cross sections

= Transport versus produced particles [Dunlop, Lisa & Sorensen, PRC 84, 044914 (2011)]:
Larger elliptic flow for transport than for produced (anti)particles

= Different particle and antiparticle transport coefficients [Greco, Mitrovski & Torrieri,
PRC 86, 044905 (2012)] : Large absorption cross sections for antiparticles

= Baryon charge, strangeness and isospin conservations [Steinheimer, Koch &
Bleicher, PRC 86, 044903 (2012)]: Decreasing pbar/p ratio with radial distance

= Different particle and antiparticle potentials [Xu, Chen, Lin & Ko, PRC 85, 041901(R)
(2012)]: Repulsive potential for particles and attractive potential for antiparticles

= Different quark and antiquark potentials [Song, Plumari, Greco, Ko &Li, arXiv:1211.5511
[nucl-th]]: Repulsive vector potential for quarks and attractive one for antiquarks



Ko & Li, JPG 22, 1673 (1996); Ko,
Koch & Li, ARNPS 47, 505 (1997)

= Nucleons and antinucleons: Relativistic mean-field model - attractive scalar
potential Z_ and repulsive vector potential 2, (“+” for nucleons and “-” for
antinucleons due to G-parity)

Hadronic potentials in nuclear medium (l)
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* Deep antiproton attractive potential reduces its production threshold and
thus enhances its yield in subthreshold heavy ion collisions



Hadronic potentials in nuclear medium (Il) K0 &Li,JPG 22, 1673 [1996); Ko,
Koch & Li, ARNPS 47, 505 (1997)

= Kaons and antikaons: Chiral effective Lagrangian = repulsive potential for kaons
and attractive potential for antikaons
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* Experimental data on spectrum and directed flow are consistent with
repulsive kaon and attractive antikaon potentials. 7



Hadronic potentials in nuclear medium (lll) Kaiser & Weise,
PLB 512, 283 (2001)

*Pions: U =II/(2m ) interms of pion selfenergies
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Isospin even and odd niN-scattering matrices extracted from energy shift and width of
1s level in pionic hydrogen atom

T'=1847tm and T =-0.045fm

At normal nuclear density p=0.165 fm-3 and isospin asymmetry 6=0.2 such as in Pb,

U_=14MeV, U .=-1MeV, U , =6 MeV

T



Hadron density evolutions in AMPT

Adjust parton scattering cross section and ending time of partonic stage to
approximately reproduce measured elliptic flows and extracted hadronic energy
density (~ 0.35 GeV/fm3): isotropic cross sections of 3, 6 and 10 mb, and parton
ending time of 3.5, 2.6, 2.9 fm/c for s¥/2,,= 7.7, 11.5, and 39 GeV, respectively
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" I[ncreasing baryon and decreasing antibaryon densities with decreasing energy
® |[ncreasing neutron density with decreasing energy, but isospin asymmetry
6=0.02 is small due to production of A hyperon and pions



Particle and antiparticle differential elliptic flows
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= Similar particle and antiparticle elliptic flows without hadronic potentials

" Hadronic potentials increase slightly p and pbar v, at p;<0.5 GeV but reduce
slightly (strongly) p (pbar) v, at high p;

" Hadronic potentials increase slightly v, of K* and reduce v, of K-

= Effects of hadronic potentials on t* and 1t v, are small



P.-integrated particle and antiparticle elliptic flow difference

T bt = Difference very small without
hadronic potentials = different

N A and negligibly small value at 39 GeV,
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= Compared to experimental values
of 63%, 44%, and 12% for (p,pbar),

10 20 30 40 13%, 3%, and 1% for (K*,K), -15%,
112 -10%, and -3% for (rt*,w’) at 7.7,
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- Hadronic potentials underestimate p-pbar for (p,pbar) and (r*,iv) and larger
and overestimate K*-K- v, difference for (K*,K")



Quark and antiquark potentials in QGP (I)

= NJL model [Bratovic, Hatsuda & Weise, PLB 719, 131 (2013)]
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= Mean-field approximation
e 2 _ o
L= w(za“ - §Gv<mw>)w — MY+ ...

where M* = diag(M,, My, M,) with

M, = my, — 2G(au) + 2K (dd)(5s) (@iq:) = —2M;N. / dgk (k) — fi(K)]
My = md — 2G(dd) + 2K (ss)(uu) d3k
M, = m, —2G(5s) + 2K (au){dd) (by") = 2N, 3 / £ilk) = Fi(h)),

i=u,d,s



Quark and antiquark potentials in QGP (ll)

Ugq = \/M§ +(0F 90P)* + gupo — \/m3 + P2

Net baryon current: p= <W¢> _ 2
gv — gGV

Net baryon density: £0 = <1E’YO¢>

= Quark mass is modified by the quark condensate
- attractive scalar potential on both quark and antiquark

= Vector potential is repulsive for quark and attractive for antiquark
- enhances relative v, difference between quarks and antiquarsk

- enhances relative v, difference between p and pbar, A and Abar,
K*and K-

—> Would bring results with only hadronic potentials closer to experimental data



Effects of attractive scalar potential in quark matter

Plumari, Baran, Di Tori, Ferini, and Greco, PLB 689, 18 (2010)
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= Attractive scalar potential reduces v, of both quark and antiquark
= Effects are reduced when parton scattering cross section is large



Effects of vector potential in quark matter

Using m = m,= 3.6 MeV, m_= 87 MeV, GA?= 3.6, KA>=8.9, A = 750 MeV
Initial parton distributions from AMPT

v, (%)

time (fm/c) p. (GeV)

= Time (electric) component of vector potential increases quark but decreases
antiquark elliptic flows

= Space (magnetic) component of vector potential has a similar effect at low p;
but an opposite effect at high p;

= Net effect of vector potential: larger quark than antiquark elliptic flows
15



Partonic mean-field effects on hadron and antihadon v,
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and their anitparticles from quarks and
antiquarks at hadronization
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smaller v, for antiproton than proton,
antilambda than lambda, and K than K*
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Effects of hadronic evolution (mean fields + scattering)

Before hadronic evolution After hadronic evolution
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= Before hadronic evolution
- nucleons have larger v, than antinucleons
- K" have larger v, than K*
= After hadronic evolution
- v, increases for all hadrons
- v, of nucleons remains larger than that of antinucleons

- v, of K* becomes larger than that of K-
17



Charged hadron elliptic flow
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= Sensitive to parton cross section - 1 mb to reproduce data
" |[nsensitive to partonic vector mean fields



Relative v, difference including both partonic and hadronic potentials
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= Finite partonic vector mean field with G, /G=0.5-1.1 is needed
to describe STAR data



Effects of vector interaction on QCD phase diagram

T (MeV)

= Location of critical point depends strongly on G,;; moving to lower temperature
and larger baryon chemical potential as G, increases
= Critical point disappears for G, > 0.6 G



Summary

= Different particle and antiparticle v, is observed in BES at RHIC where
produced matter has a large finite baryon chemical potential (= 400 MeV)

= Taking into account different potentials for hadrons and antihadrons can
partially account for the experimental observation

= Quarks and antiquarks are affected by scalar and vector potentials in QGP
- reduced v, due to attractive scalar potential
- vector potential becomes nonzero at finite baryon chemical potential;
repulsive for quarks and attractive for anitquarks
- larger quark than antiquark v, in baryon-rich QGP
- larger v, for proton than antiproton, lambda than antilambda, and
K* than K (small G,)) or K than K* (large G,)) after hadronization

" Including both partonic and hadronic potentials - G,=0.5-1.1G

— absence of critical point in QCD phase diagram?

" Information on quark and antiquark potentials at finite baryon chemical
potential is useful for understanding the phase structure of QCD



