The Physics of QCD Matter

Challenges and Opportunities

Berndt Mueller Brookhaven National Laboratory & Duke University

New Frontiers in QCD 2013 Yukawa Institute, Kyoto 2 December 2013

a passion for discovery

Where we are

Brookhaven Science Associates

BROOKHAVEN

The Accelerators

Relativistic Heavy Ion Collider 3.8 km circumference Top energy: $E_{cm} = 200 \text{ GeV/NN}$ RHIC also collides polarized p

The Detectors

The Landscape

Main Discoveries

- Hot nuclear matter produced in collisions at RHIC/LHC is a liquid quark-gluon plasma. The plasma is made up of individually flowing quarks, not quarks bound into baryons and mesons.
- The QGP is a strongly coupled nearly "perfect" liquid (η/s near the quantum limit); RHIC's QGP is (on average) closer to perfection than the QGP produced at LHC.
- Energetic quarks and gluons moving through the QGP rapidly lose energy, causing jets to be strongly **quenched**.
- Light quarks (u,d,s) are completely thermalized in the QGP; these valence quarks recombine during hadronization.
- Heavy quark bound states (J/ψ, Υ') "melt" in the QGP due to color screening and ionization. RHIC and LHC data together indicate that charm quarks can recombine when the QGP hadronizes, adding to the evidence for quark deconfinement.
- Approx. 20% of the proton spin is probably carried by gluons.

QCD Matter at RHIC is most "perfect"

NATIONAL LABORA

Quark number scaling

Jet quenching

J/ψ suppression

J/ψ suppression at RHIC is stronger than at LHC: Fewer c-quarks which can recombine!

150

100

200

250

ALICE Preliminary, 2.76 TeV Pb+Pb, 2.5<|y|<4

PHENIX, 200 GeV Au+Au, 1.2<|y|<2.2

Stat. Hadron Model (A. Andronic et al)

Transport Model I (Y.-P. Liu et al), LHC Transport Model II (X. Zhao et al), LHC

Transport Model I, RHIC

Transport Model II, RHIC

1.4

1.2

£^{₹0.8}

0.6

0.4

0.2

0

0

forwa

50

do_=0.25mb

do_==0.15mb

350

400

part

LHC

300

The Black Hole connection

Dynamics of hot QCD matter can be mathematically mapped on black hole dynamics in 4+1 dimensions (AdS₅ space).

Formation of hot QCD matter at RHIC is similar to formation of a black hole, tied to information loss. This is probably true for any QFT, but the gravity dual of QCD is not known, and it is unclear whether g^2N_c is large enough to apply the classical limit of the dual theory.

Brookhaven Science Associates

11

Open questions

There are many!

Brookhaven Science Associates

BROOKHAVEN

12

Bulk dynamics

- Do they matter, if hydrodynamics works?
 - Can CGC be distinguished from AdS/CFT?
 - In CGC: How does the glasma equilibrate?
 - What are the most discriminating observables?
- Check on system dependence
 - Cu+Cu, Cu+Au, U+U, also p+Pb, d+Au !

Brookhaven Science Associates

AdS/CFT + Hydro works

van der Schee, Romatschke, Pratt: Collision of two nuclear "shock waves"in AdS/CFT, followed by hydrodynamic evolution and hadronic cascade final scattering. Main results (at strong coupling): Hydro works after 0.35 fm/c; Spectra fit LHC and RHIC data (w/o free param's).

Glasma equilibration

Brookhaven Science Associates

T. Epelbaum & F. Gelis arXiv: 1307.2214

 $P_L/P_T = 0.70$ after 0.4 fm/c !

Fit to: $\epsilon(\tau) = \epsilon_0 \tau^{-4/3} - 2 \eta_0 \tau^{-2}$

Consistent with $\eta/\epsilon^{4/3} \approx 0.25$ or $\eta/s \approx 0.12$ ($s \approx 2 \epsilon^{4/3}$).

15

Alternative mechanisms

Asakawa, Bass & BM,

PRL 110 (2006) 202301

16

Brookhaven Science Associates

Classical lattice gauge theory

Towards 3-D CGC

Ozonder and Fries, 1311.3390

using 3-D CGC model developed by Lam and Mahlon. Color charge distribution in nuclear rest frame:

$$\langle \rho^a(0)\rho^b(x)\rangle = \delta^{ab}\kappa_A^3 \left[\delta^3(x) - \frac{3\exp\left(-\frac{\sqrt{3}|x|}{\lambda}\right)}{4\pi\lambda^2|x|}\right]$$

Missing x-evolution of color charge density, which leads to a stronger rapidity dependence.

18

QGP in p+Pb ?

Eccentricity engineering

Deuteron has a much larger average ϵ_2 RHIC has done it! ³He will generate a large ε₃ RHIC can do it!

He3 + Au

PHENIX: nucl-ex/1303.1794 [PRL 111 (2013) Highlight]

Brookhaven Science Associates

Jets quenching: Questions

- What is the mechanism of energy loss ?
 - "radiative" = into non-thermal gluon modes
 - "collisional" = directly into thermal plasma modes
- How are radiative and collisional energy loss affected by the structure of the medium (are there quasiparticles or not)?
 - Quasiparticle with masses $m > \Gamma$?
 - AdS/CFT inspired models with weak-strong coupling transition?
- What happens to the lost energy and momentum ?
 - If EL is "radiative", how quickly does the radiation thermalize
 ⇔ What is the longitudinal momentum (z) distribution ?
 - What is the angular distribution of the jet energy (the jet shape)
 ⇔ How much of the energy is found in a cone of angular size R ?
- How do the answers depend on the parton flavor ?

Measuring q-hat

Collaborative theoretical efforts are making extraction of qhat and ehat from data possible.

Finding answers: Experimental prospects

Brookhaven Science Associates

BROOKHAVEN

Planned Upgrades

Machine upgrade:

Bunched beam electron cooling for low-E beams

~10x luminosity

relativistic gamma

Detector upgrades:

- STAR HFT
- PHENIX MPC-EX
- STAR TPC pad rows

 sPHENIX solenoid, EMCAL + HCAL for jet physics @ RHIC

STAR Heavy Flavor Tracker

Probing the sQGP with heavy quarks

Suppression of mesons carrying open heavy flavor = energy loss of heavy quarks (c, b) explores mechanism of energy loss via medium color response; sensitive to medium structure.

Spectrum of heavy quarks is important for understanding c-cbar recombination.

Beam energy scan II

Providing Answers: Emergence of Strong Coupling

BaBar solenoid in its transfer frame

 Auge
 May 17, 2013

Low viscosity, rapid thermalization, and strong jet quenching are consequences of strong coupling

Determination of qhat(T), η/s(T) permits analysis of coupling strength

Requires measurements of jet, di-jet, γ -jet quenching, jet structure at multiple \sqrt{s}

sPHENIX upgrade will enable full jet reconstruction at RHIC

RHIC +LHC data can discriminate between models

Providing Answers: Gluon Saturation

CGC + glasma thermalization provide for a remarkably successful 3+1-D hydro account for A+A multiplicities and event-by-event anisotropic flow.

Consistent with observed suppression of forward hadron and di-hadron production in d+Au at RHIC.

Forward γ production in p+A probes gluon densities at low x; transverse spin asymmetries in p+A probe the saturation scale. Forward detector upgrades and RHIC p+Au run in 2015 will make it possible.

Run Schedule for RHIC

Years	Beam Species and Energies	Science Goals	New Systems Commissioned
2014	15 GeV Au+Au 200 GeV Au+Au	Heavy flavor flow, energy loss, thermalization, etc. Quarkonium studies QCD critical point search	Electron lenses 56 MHz SRF STAR HFT STAR MTD
2015-16	p+p at 200 GeV p+Au, d+Au, ³He+Au at 200 GeV High statistics Au+Au	Extract η/s(T) + constrain initial quantum fluctuations More heavy flavor studies Sphaleron tests Transverse spin physics	PHENIX MPC-EX Coherent e-cooling test
2017	No Run		Low energy e-cooling upgrade
2018-19	5-20 GeV Au+Au (BES-2)	Search for QCD critical point and onset of deconfinement	STAR ITPC upgrade Partial commissioning of sPHENIX (in 2019)
2020	No Run		Complete sPHENIX installation STAR forward upgrades
2021-22	Long 200 GeV Au+Au with upgraded detectors p+p, p/d+Au at 200 GeV	Jet, di-jet, γ-jet probes of parton transport and energy loss mechanism Color screening for different quarkonia	sPHENIX
2023-24	No Runs		Transition to eRHIC
khawan Science	Associator		BROOKHAVE

Brookhaven Science Associates

From RHIC to e-RHIC

The 2013 NSAC *Subcommittee on Future Facilities* identified the physics program for an Electron-Ion Collider, as it was described in the 2013 EIC White Paper, as *absolutely central* to the U.S. nuclear science program in the next decade.

Sunday, December 1, 13

Brookhaven Science Associates

e-RHIC will be a QCD laboratory

Gluon and sea quark structure of the proton, or what gives matter (most of) its mass?

> Use the nucleus as a fm-scale vertex detector to probe confinement

Is there a universal saturated gluon ocean (CGC) at low x ?

32

NATIONAL LABORA

The far far future?

Sometimes it is there earlier than you think!

CERN is considering a future circular collider (FCC) with p+p CM energy of order 100 TeV (~ 7 times top LHC energy).

Kick-off meeting in mid-February 2014

Is it potentially interesting to study heavy ion collisions at such higher energy?

Can we make predictions of dn/dy, and phenomena, such as elliptic flow, higher Fourier components, jet quenching, depending on different temperature dependence models for η/s , q-hat, etc.?

Would a higher energy help to discriminate?

We certainly need some "low energy" runs at the LHC to bridge the gap to RHIC and explore T-dependence of QGP properties.

Maybe we can have some discussions at this meeting!?

33

Back to the Basics

- We want to understand how QCD works on the hadronic scale, in hadrons and in QGP.
- The "Plumpudding Model" did not work for the atom, but it surely fits our present understanding of the nucleon!
 - We have learned a lot about the "plums" (the valence quarks), but very little about the "pudding" (the color fields).
 - We want to know how the proton gets its mass and its spin.
- We know that the QGP behaves like an inviscid liquid, but we don't yet know how it gets there.
 - Is the QGP a weakly coupled state masquerading as a strongly coupled one by some nonperturbative mechanism?
- We want to determine some dynamical properties of the QGP that tell us about its structure:
 - Shear viscosity, diffusion constants, color screening length, chiral properties, phases at high baryon density

Instead of a summary

Brookhaven Science Associates

NATIONAL LABORATORY

Let's have lots of (friendly) arguments this week!

Brookhaven Science Associates

