# Study QCD Phase Diagram in High-Energy Nuclear Collisions

Nu Xu

### Many Thanks to the Organizers!



<sup>(1)</sup> Nuclear Science Division, Lawrence Berkeley National Laboratory, USA
 <sup>(2)</sup> College of Physical Science & Technology, Central China Normal University, China





### 1) Introduction: QCD Phase Structure

### 2) Part I: STAR BES-I Results (selected)

### 3) Part II: Quarkonia in HIC



### **QCD** Emergent Properties



- 1) After the discover of the Higgs boson the QCD degrees of freedom are well defined, at short distance.
- Study dynamical structures of matter that made from *q*, *g*. *E.g. the* confinement, nucleon spin, the *QCD phase structure*... Large *α*<sub>s</sub> and strong coupling QCD at long distance.



### **QCD Emergent Properties**



#### **Study QCD Phase Structure**

- Phase boundary?
- Critical point?

### **Observables:**

- 1<sup>st</sup> order phase transition
  - (1) Azimuthally HBT
  - (2) Directed flow  $v_1$

#### Partonic vs. hadronic dof

- (3) R<sub>AA</sub>: N.M.F.
- (4) Dynamical correlations
- (5) v<sub>2</sub> NCQ scaling\*

Critical point, correl. length

(6) Fluctuations\*

(7) Di-lepton production\*

BES-I:  $\sqrt{s_{NN}} = 7.7, 11.5, 19.6, 27, 39$ GeV



### Relativistic Heavy Ion Collider



Brookhaven National Laboratory (BNL), Upton, NY



Animation M. Lisa

# Part I

# Recent Results from RHIC BES-I Program



### **STAR Experiment**







### Particle Identification at STAR





Multiple-fold correlations for the identified particles!







| Period    | Detectors             | Physics            |
|-----------|-----------------------|--------------------|
| 2001-2010 | ТРС                   | u, d, s            |
| 2010      | TPC + TOF             | u, d, s + dilepton |
| 2013      | TPC + TOF + MTD       | u. d. s. c. b +    |
| 2014      | TPC + TOF + MTD + HFT | dilepton           |

### → **STAR:** Large coverage, excellent PID, fast DAQ

- detects nearly all particles produced at RHIC
- multiple fold correlation measurements
- Probes: bulk, penetrating, and *bulk-penetrating*
- → **STAR:** Perfect mid-y collider experiment

### → **STAR:** Expanding into forward rapidity regions



### (1) Hadron Spectra



#### $\sqrt{s_{NN}}$ = 39 GeV Au+Au Collisions





### **Bulk Properties at Freeze-out**





#### Chemical Freeze-out: (GCE)

- Centrality dependence in  $T_{ch}$  and  $\mu_B$
- The effect seems stronger at lower energy.

#### Kinetic Freeze-out:

- Central collisions => lower value of
   *T<sub>kin</sub>* and larger collectivity β
- Stronger collectivity at higher energy

# (2) BES Dependence Dielectrons $\begin{array}{c} \end{array}$ $\end{array}$ $\begin{array}{c} \end{array}$ $\end{array}$ $\end{array}$ $\end{array}$ $\end{array}$ $\end{array}$ $\end{array}$



- Low mass reg. (M<sub>ee</sub> ≤ 1GeV): no obvious energy dependence in the ratio of data/cooktail. At 19.6, the ratio is consistent with SPS results.
- 2) Intermediate mass reg. ( $1 \le M_{ee} \le 3$ GeV): clear energy dependence, correlated charm? Thermal radiation,  $\sim \exp(-M_{ee}/T)$ ?







- 1) With in-medium broadened rho, model results are consistent with experimental data ( $m_{ee} \le 1 \text{ GeV/c}^2$ ) at  $\sqrt{s_{NN}} = 200, 62.4, 39, 27$  and 19.6GeV
- In Au+Au collisions at 200GeV, the centrality and p<sub>T</sub> dependence results on data/hadronic cocktails (m<sub>ee</sub> ≤ 1 GeV/c<sup>2</sup>) understood with current model calculations

### (3) NCQ Scaling in v<sub>2</sub>







of quark scaling and the value of  $v_2$  of  $\varphi$  will be small.

\* Thermalization is assumed!



### Collectivity v<sub>2</sub> Measurements



- Number of constituent quark (NCQ) scaling in v<sub>2</sub> => partonic collectivity => deconfinement in high-energy nuclear collisions
- 2) At  $\sqrt{s_{NN}}$  < 11.5 GeV, the v<sub>2</sub> NCQ scaling is broken, indicating hadronic interactions become dominant.



### BES v<sub>2</sub> and Model Comparison





- (a) Hydro + Transport: consistent with baryon results.
  - [J. Steinheimer, V. Koch, and M. Bleicher PRC86, 44902(13).]
- (b) NJL model: Hadron splitting consistent. Sensitive to vector-coupling and net-baryon density dependent. [J. Xu, T. Song, C.M. Ko, and F. Li, arXiv:1308.1753]



# (4) Higher Moments





- High moments for conserved quantum numbers:
   Q, S, B, in high-energy nuclear collisions
- 2) Sensitive to critical point ( $\xi$  correlation length):

$$\left\langle \left( \delta N \right)^2 \right\rangle \approx \xi^2, \ \left\langle \left( \delta N \right)^3 \right\rangle \approx \xi^{4.5}, \ \left\langle \left( \delta N \right)^4 \right\rangle \approx \xi^7$$

3) Direct comparison with calculations at any order:

$$S*\sigma \approx \frac{\chi_B^3}{\chi_B^2}, \qquad \kappa*\sigma^2 \approx \frac{\chi_B^4}{\chi_B^2}$$

4) Extract susceptibilities and freeze-out temperature. An independent/important test on thermal equilibrium in heavy ion collisions.

#### References:

- A. Bazavov et al. *1208.1220* (NLOTE) // STAR: *PRL*105, 22303(2010) // M. Stephanov: *PRL*102, 032301(2009) // R.V. Gavai and S. Gupta, *PLB696*, 459(2011) // S. Gupta, et al., *Science*, 332, 1525(2011) // F. Karsch et al, *PLB695*, 136(2011) // S.Ejiri etal, PLB633, 275(06) // M. Cheng et al, *PRD79*, 074505(2009) // Y. Hatta, et al, *PRL91*, 102003(2003)



### **Net-proton Higher Moments**





STAR net-proton results:

- 1) All data show deviations below Poisson beyond statistical and systematic errors in the 0-5% most central collisions for  $\kappa\sigma^2$ and S\sigma at all energies. Larger deviation at  $\sqrt{s_{NN}} \sim 20$ GeV
- 2) Independent p and pbar production reproduces the observed energy dependence of  $\kappa\sigma^2$  and  $S\sigma$
- 3) UrQMD model show monotonic behavior in the moment products
- 4) Higher statistics needed for collisions at √*s<sub>NN</sub>* < 20 GeV.</li>
   BES-II is needed.

STAR: 1309.5681



- 1) BES-II at  $\sqrt{s_{NN}}$  < 20 GeV
- 2) RHIC e-cooling will provide increased luminosity  $\sim x3 10$
- 3) STAR iTPC upgrade extend mid-rapidity coverage beneficial to several crucial measurements





 (1) In high-energy nuclear collisions, √s<sub>NN</sub> ≥ 200 GeV, hot and dense matter, with partonic degrees of freedom and collectivity, has been formed

### (2) RHIC BES-I: **[partonic]** < μ<sub>B</sub> ~ 110 (MeV) (√s<sub>NN</sub> ≥ 39 GeV) **[hadronic]** > μ<sub>B</sub> ~ 320 (MeV) (√s<sub>NN</sub> ≤ 11.5 GeV)

 (3) RHIC BES-II: focus at √s<sub>NN</sub> ≤ 20 GeV region with higher luminosity (x10) + detector upgrade iTPC: Run18 (2017)



### **Exploring QCD Phase Structure**







### eSTAR: The Future of RHIC





"New Frontiers in QCD", Kyoto, Nov. 18 - Dec. 20, 2013

# Part II

# Study Quarkonia Production at RHIC and LHC

Yunpeng Liu<sup>1</sup>, Zebo Tang<sup>2</sup>, Kai Zhou<sup>3</sup>, NX<sup>4</sup>, Pengfei Zhuang<sup>3</sup>

<sup>1:</sup> Texas A&M, USA
 <sup>2:</sup> USTC, Hefei, China
 <sup>3:</sup> Tsinghua University, Beijing, China
 <sup>4:</sup> CCNU and LBNL, China/USA

# The QCD Phase Diagram and High-Energy Nuclear Collisions





## Why Heavy Quark?







### **Key Effects**









#### **Cold Matter Effects:**

- 1) Npdf: shadowing effect
- 2) Production cross-sections
- 3) Cronin effect

#### Hot Matter Effects:

- 1) Debye screening
- 2) Regeneration





### **Sequential Suppressions**

Debye Screening:

$$J/\psi \rightarrow c + \bar{c}$$
  $r_{J/\psi} \ge \lambda_D \approx \frac{1}{g(T) \bullet T}$ 

Total # of J/ψ reduces
 Sensitive to hot/dense medium

### Regenerations

At the boundary of hadronizatipn:

 $c + c \rightarrow J/\psi$ 

- 1) Total # of J/ψ increases
- 2) Sensitive to hot/dense medium







$$\mathbf{R}_{\mathbf{A}\mathbf{A}} = \frac{\left\langle \mathbf{N} \right\rangle^{\mathbf{A}\mathbf{A}}}{n_{bin}^{AA} \left\langle \mathbf{N} \right\rangle^{\mathbf{pp}}}$$

1) Traditional  $R_{AA}$  depends on the (TMD)  $p_T$  integrated yields. Sensitive to *Npdf*\* and model dependent parameter  $n_{bin}$ .

$$r_{AA}(p_{T}^{2}) = \frac{\left\langle p_{T}^{2} \right\rangle^{AA}}{\left\langle p_{T}^{2} \right\rangle^{pp}}$$

2) The TMD dependent  $r_{AA}(p_T^2)^{**}$ more sensitive to **dynamical medium effects** including Cronin effect, Debye Screening, and Regeneration.

\* H. Satz, arXiv: 1303.3493
\* \* Kai, Xu, Zhuang, NP<u>A834</u>, 249(2010)

TMD: transverse momentum distribution



### **Charm Production at RHIC**





### Where is the true QCD medium effect?

He, et al. arXiv: 1204.4442; Gossiaux, et al. arXiv: 1207.5445

"New Frontiers in QCD", Kyoto, Nov. 18 - Dec. 20, 2013

## Charm Interactions with Medium







- 1) As for light-quark hadrons, charm-quark hadrons show suppression at intermediate  $p_T$  region: energy loss of hq!
- 2) At LHC, charm-quark hadrons show non-zero collectivity: strong interactions among hq and the hot/dense medium.



### **Onia Production in HI Collisions**











Driven by the initial heavy quark production cross-sections, much larger fraction of J/ $\psi$ s are formed via regeneration, at hadronization, at LHC than that from RHIC!



# T.M.D.: Charmonium Production





- **1)** LHC: large fraction of final  $J/\psi$ s produced via regeneration leads to lower value of  $<p_T>$
- **2) SPS:** all final  $J/\psi$ s are survivors. Increase of  $< p_T >$  due to the initial Cronin scatterings
- 3) **RHIC**: mixture of initial and regenerated  $J/\psi$ s

### $J/\psi v_2$ Results







- (1)  $J/\psi v_2$  is consistent with zero for MB Au+Au collisions at RHIC.
- (2) At LHC energy, finite value of the J/ $\psi$  v<sub>2</sub> is seen at the forward-y. Larger v<sub>2</sub> is predicted for mid-y J/ $\psi$ s.

Stronger regeneration effect at LHC!



## T.M.D.: Quarkonia Production





- (A) *J/ψ* productions at SPS, RHIC and LHC
  (B) *Upsilon* production:
  - RHIC: negligible regenerations, Cronin effect dominant.
  - LHC: sizable contributions from regenerations.



### Regeneration at Low p<sub>T</sub> Region





Coalescence J/ $\psi$  concentrate at the small transverse momenta: from low  $p_T$  charm quarks and lower averaged J/ $\psi$  < $p_T$ > and < $p_T^2$ >. Initial shadowing effect is small on  $r_{AA}$ .

At LHC: Deconfinement and Thermalization of charm quarks!





- (1) In high-energy collisions, transverse momentum distributions (TMD) are important!
- (2) The effects of Debye Screening and Regeneration are opposite for quarkonia production. They are all medium effects.
- (3) J/ $\psi$  production showing by  $r_{AA}(p_T^2)$ , demonstrated the influence of Debye screening and the regeneration, implying the formation of the hot/ dense medium, the QGP, at RHIC and LHC. At LHC: charm quarks are consistent with the scenario of thermalization.

# Thank you!