STAR Heavy Ion Physics Program and Future Perspective

Huan Zhong Huang 黄焕中

Department of Physics and Astronomy University of California at Los Angeles

NFQCD Symposium @ Yukawa Institute Dec. 2013

Outstanding Scientific Questions at RHIC

Hot QCD Matter

- 1: Properties of the sQGP
- 2: Mechanism of energy loss: weak or strong coupling?
- 3: Is there a critical point, and if so, where?
- 4: Novel symmetry properties
- 5: Exotic particles

12/2/2013

Partonic structure

- 6: Spin structure of the nucleon
- 7: How to go beyond leading twist and collinear factorization?

8: What are the properties of cold nuclear matter?

Outline

Heavy Quark Probes

RHIC Beam Energy Scan Program Phase I Results

Novel Symmetry and Exotic Searches

Towards Future QCD Studies at RHIC and eRHIC

STAR Initial Conditions Remain a Major Uncertainty

NeXSPheRIO model reproduce the data well for 20-30% and 30-40% at pT < 1 GeV/c</p>

12/2/2013 \rightarrow Both v₂ and v₃ are better described by $\eta/s \sim 0.08$

Heavy Quark Probe of sQGP properties

NPE – access to high pT region Simultaneous Measurements of R_{AA} and v₂

Better p+p reference data Nature of the measured v₂ value at high pT Separation of B and D decay electrons !

Heavy Quark Collectivity – Next 2 years !

Elliptic Flow v₂ of D at low pT NPE – Separation of B and D decays in Au+Au collisions

----Needs HFT Upgrade

Heavy Quark Tagged Jet-Medium Interaction and Medium Response !

7

Status of HFT and MTD Upgrades

Heavy Flavor Tracker Muon Telescope Detector Full Detector Commissioning and Physics Running in 2014 Heavy Quark Collectivity, NPE B and D separation, Upsilon

Year	En (GeV)	# Event (10 ⁶)
2010	39	130
2010	11.5	12
2010	7.7	5
2011	27	70
2011	19.6	36
2014	15 (?)	

RHIC can deliver low energy beams ! STAR: First glimpse of QCD bulk matter over a broad range of chemical potentials !

Searches for QCD Critical Point

What is the width in sqrt(s) or chemical potential for the QCD critical point ?

What is the most appropriate reference distribution for high moments?

Direct Flow v₁ Slope from BES

STAR

Systematic v₂ Differences between particle and anti-particles

Implication for large $Rv = G_v/G$?

nucleonkaonTheoretical models predicted that large $R_v \rightarrow$ no critical point or first-order PT in physical region !What other measurements to access R_v ?

Jun Xu, Taesoo Song, Che Ming Ko and Feng Li, arXiv 1308.1753 M. Asakawa et al., NP A504, 668 (1989);

^{12/2/2013} N.M. Bratovic, T. Hatsuda and W. Weise, PLB **719** (2013) 131. ¹³

Mid-Rapidity Hyperon Yield

Increased Hyperon over Ks ratios

STAR

The formation probabilities of baryons and mesons depend on the environment – local parton density **B/m** ratios

-- Coalescence 16

Strange quark analysis from Ω and ϕ using Coalescence Framework

3p.

Ω(sss) and φ(ss̄) formed at chemical freezeout from coalescence of 3 s quarks and s-sbar pairs. Assuming sudden coalescence of s quarks of approximately equal pT and the same shape of pT distributions for s and sbar 10⁻³

- quarks
- The s quark pT distribution at freeze-out ~ Ω(3p_T)/φ(2p_T)

IS there a difference in partonic dynamics between 11 and 20 GeV? 12/2/2013 NEED more statistics (BES II) and a 15 GeV run !! 17

Coalescence Picture !

Independent Empirical Check on Coalescence – if $s(p_T) \sim \Omega(3p_T)/\phi(2p_T)$, then $\phi(2p_T)/s(p_T)$ is also $s(p_T)$ are these functions of similar shape?

NEED More Data at 11.5 GeV !!

Road to Beam Energy Scan II

1) Need electron cooling to be more efficient !

 2) STAR TPC Inner Sector readout upgrade
-- enhance tracking and PID in η 1-1.7 region

BES II Starting 2018+

QCD Exotic Phenomena

х

QCD Vacuum Sphaleron excitation coupled to strong magnetic field from plane spectator protons

-- charge separation across the reaction plane

parity violating in strong interaction

Kharzeev et al NP A803, 227 (2008)

y (defines Ψ_R)

$$\Psi = \left\langle \cos(\phi_{\alpha} + \phi_{\beta} - \Psi_{RP}) \right\rangle$$
$$= \left[\left\langle v_{1,\alpha} v_{1,\beta} \right\rangle + B_{in} \right] - \left[\left\langle a_{\alpha} a_{\beta} \right\rangle + B_{out} \right]$$

Voloshin, PRC70, 057901 (2004)

charge dependent – same sign (++,--) and opposite sign(+-, -+) sensitive to charge separation

First measurements

Strong charge sign dependent – Same-Sign (SS) Opposite-Sign (OS) correlation – very different feature and magnitude !

Existing models cannot reproduce the data !

How to separate LPV signal and background?

B. I. Abelev et al. [STAR Collaboration], Phys. Rev. Lett. 103, 251601 (2009).

B. I. Abelev et al. [STAR Collaboration], Phys. Rev. C 81, 054908 (2010).

Conventional Explanation ?

Blast Wave Parameterization = Charge Correlation + Radial + Elliptic Flow

FIG. 7. (Color colline) Balance function $B_{\rm eff}$, Aq (for 40–50% centrality as function of the relative rangle included by balancing parimets (or $\phi = 0$) (black squares), 45% red triangles claud 90° (blue circles). The balance function is nervower for in plane parts that for out of plane parts. For intermediate angles, the balance function is busical toward measures.

 $\frac{\langle M^2(\gamma) \rangle}{\langle M \rangle} = \frac{2}{\langle M \rangle} \int d\phi \, d\Delta \psi (\frac{dM}{d\phi} (|\theta|) \psi, \Delta \phi) \\ \times |\cos(2\phi)\cos(\Delta \phi) - \sin(2\phi)\sin(\Delta \psi)|,$

- With some "adjustments" can describe the data (diff "opp" "same").
- Note that the correlator is inversely proportional to multiplicity

Schlichting and Pratt, PRC83 014913 (2011)

Recent STAR Results on the Charge Separation Measurement

Charge separation

-- disappears at low energy where QGP presumably cannot be formed and/or cannot live long No QGP → No Local Parity Violation !

Is this the unique explanation ?

. A Hickory

Recent STAR Results on the Charge Separation Measurement

Charge separation -- disappears in very central collisions when magnetic field approaches zero, but elliptic flow is finite !

Background has to be coupled to v₂ – no reason for background to disappear when v₂ is finite ! Measured correlator unlikely be entirely due to 12/2/2013 background !

Intriguing, yet inconclusive !

Experimental measurements -- consistent with some aspects of expectations from chiral magnetic effect and chiral magnetic wave

> -- But we do not know for sure the magnitude of the background -- we are not sure of the nature of background for CMW

We need more ideas and explorations !

Searches for Exotic Particles

 Λ - Λ Correlation Ehime 1.4 -- sensitive to $\Lambda\Lambda$ interaction fss2 ND50 H (uuddss) bound state ND56 NSC89 1.2 -- depletion of $\Lambda\Lambda$ pairs ······ NSC97 0-40% Au+Au @ 200GeV CF(Q) Theoretical models fit to 0.8 **STAR preliminary data:** $\Lambda\Lambda$ – attractive interaction **STAR preliminary** no bound state ! 0.6 0.05 0.1 0.15 Q (GeV/c) Other di-hyperons ? $\Xi\Xi$ or $\Omega\Omega$

Other exotic particles?

0.25

Λ - Λ Correlation Function

STAR

A. Ohnishi, HHI workshop proceedings 2012

27

Scattering length (a₀) is negative in most fits
Current fit from different potential models to data gives indication towards non-existence of bound H-dibaryon

Chiral Symmetry and Di-electrons

Low mass region (<1.0 GeV) – vector meson properties in the QCD medium Intermediate mass region (1-3 GeV) – QGP radiation and heavy quark decays (depends on heavy quark evolution in the QCD medium) Very difficulty experimental measurements! lessons from SPS – need 5-10 years to understand the signal and background!

- Forward instrumentation optimized for pp/pA and AA
 - Charged-particle tracking
 - e/h and γ/π^0 discrimination
 - Jet reconstruction

Gluon Saturation in Nuclei

pA dynamics in the forward proton semi-sphere sensitive to details of the gluons in the nuclei Phase of Cold Nuclear Matter

The quantum nature of the partons must manifest through saturations ! At what Q_s and x scales and to what extent?

RHIC – a Dedicated QCD Facility

QCD – Fundamental Corner Stone of the Standard Model !! -Dynamics of QCD in bulk matter, vacuum structure and hadrons? Condensed Matter Physics with Underlying QCD Interactions !

We are beyond the QGP discovery phase already ! LHC -- Energy/Temperature Frontier RHIC – New Horizons in QCD Phase Structure, Vacuum Excitation, Initial State Color Charge Dynamics, Hadron Structure and Exotics

The Best of STAR is yet to Come Heavy Flavor Physics – HFT/MTD: 2014-16 QCD Phase Diagram – BES Phase II: 2018-19 Spin, CNM Color Dynamics and AA – Towards eRHIC

eSTAR – STAR in the eRHIC Era

