New Frontiers in **QCD** 2013

Exploring the QCD phase diagram with conserved charge fluctuations

Frithjof Karsch Brookhaven National Laboratory & Bielefeld University

OUTLINE

- conserved charge fluctuations in QCD and HIC
- crossover transition chiral PHASE transition – HRG
- critical behavior at $\mu_B = 0$ and the critical endpoint at $\mu_B > 0$

Chiral critical point and QCD critical endpoint

Chiral Transition Temperature at small μ_B/T

Chiral Transition Temperature

 locate pseudo-critical temperature from chiral susceptibility

$$egin{aligned} \chi_{m,l}(T) &= rac{\partial^2 p/T}{\partial m_l^2} &= & rac{\partial \langle ar{\psi} \psi
angle_l}{\partial m_l} \ &= & \chi_{l,disc} + \chi_{l,con} \end{aligned}$$

– peak location defines pseudo-critical temperature on $N_\sigma^3 N_ au$ lattice, $T\equiv 1/N_ au a$

continuum extrapolation of pseudo-critical temperatures at physical light and strange quark masses for two different lattice discretization schemes

$$T_c = (154 \pm 9) \; {
m MeV}$$

A. Bazavov et al. [hotQCD Collaboration] Phys. Rev. D 85, 054503 (2012) consistent with: Y. Aoki et al., JHEP 0906, 088 (2009)

Chiral limit: O(4) scaling

magnetic equation of state: $M=h^{1/\delta}f_G(z)$

- scaling analysis in (2+1)-flavor QCD with HISQ fermions

 $m_{\pi}=140 {
m MeV}$

small enough to be sensitive to O(4) scaling behavior in the chiral limit

H.-T. Ding et al., Lattice 2013

O(4) Scaling in QCD: Curvature of the critical line

Bielefeld-BNL, Phys. Rev. D83, 014504 (2011) p4-action: $N_{ au} = 4$

"thermal" fluctuations of the order parameter

$$t \equiv rac{1}{t_0} \left(\left(rac{T}{T_c} - 1
ight) + \kappa_q \left(rac{\mu_q}{T}
ight)^2
ight) \;, \; z = t/h^{1/eta\delta}$$

$$M_b\equiv rac{m_s \langle ar{\psi}\psi
angle}{T^4}=h^{1/\delta}f_G(z)$$

$$rac{\chi_{m,q}}{T} = ~~ rac{\partial^2 \langle \psi \psi
angle / T^*}{\partial (\mu_q/T)^2}$$

$$= \frac{2\kappa_q T}{t_0 m_s} h^{(\beta-1)/\delta\beta} f'_G(z)$$

 $\kappa_B=\kappa_q/9=0.0066(7)$

scaling function of order parameter

$$t_{0}m_{s}\left(\frac{m_{l}}{m_{s}}\right)^{\frac{1-\beta}{\beta\delta}}\frac{\chi_{m,q}}{T^{2}}\underset{N_{\tau}=4: m_{l}/m_{s}=1/20}{\overset{-2\kappa_{q}f_{G}(2)}{1/20}}$$

$$t_{0}m_{s}\left(\frac{m_{l}}{m_{s}}\right)^{\frac{1-\beta}{\beta\delta}}\frac{\chi_{m,q}}{T^{2}}\underset{N_{\tau}=4: m_{l}/m_{s}=1/10}{\overset{1/20}{1/80}}$$

Ζ

Chiral transition and freeze-out

HRG model, lattice QCD and critical behavior

Fluctuations and Correlations: Susceptibilities

- probing the response of a thermal medium to an external field, i.e. variation of one of its external control parameters: T, μ, m_q

(generalized) response functions == (generalized) susceptibilities

pressure:
$$\frac{p}{T^4} \equiv \frac{1}{VT^3} \ln Z(V, T, \mu_{B,Q,S}, m_{u,d,s})$$

Taylor expansion and baryon number susceptibilities

$$\begin{split} \left(\chi_{n,\mu}^{B} = \sum_{i,j,k=0}^{\infty} \frac{1}{i!j!k!} \chi_{i+n,j,k}^{B,Q,S}(T) \left(\frac{\mu_{B}}{T}\right)^{i} \left(\frac{\mu_{Q}}{T}\right)^{j} \left(\frac{\mu_{S}}{T}\right)^{k} \right) \\ \text{mean:} \quad M_{B} = VT^{3} \chi_{1,\mu}^{B} = VT^{3} \left(\frac{\mu_{B}}{T} \chi_{2}^{B} + ...\right) \quad \text{for simplicity:} \\ \mu_{s} = \mu_{Q} = 0 \\ \text{variance:} \quad \sigma_{B}^{2} = VT^{3} \chi_{2,\mu}^{B} \\ = VT^{3} \left(\chi_{2}^{B} + \frac{1}{2} \left(\frac{\mu_{B}}{T}\right)^{2} \chi_{4}^{B} + ...\right) \\ \text{skewness and kurtosis:} \quad S_{B} \equiv \frac{\langle (\delta N_{B})^{3} \rangle}{\sigma_{B}^{3}} \ , \ \kappa_{B} \equiv \frac{\langle (\delta N_{B})^{4} \rangle}{\sigma_{B}^{4}} - 3 \end{split}$$

volume independent ratios of susceptibilities

$$egin{aligned} & egin{aligned} & \sigma_B^2 \ & M_B \end{pmatrix} = rac{\chi^B_{2,\mu}}{\chi^B_{1,\mu}}, & S_B \sigma_B = rac{\chi^B_{3,\mu}}{\chi^B_{2,\mu}}, & \kappa_B \sigma^2_B = rac{\chi^B_{4,\mu}}{\chi^B_{2,\mu}} \end{aligned}$$

F. Karsch, NFQCD 2013 10

PHENIX and STAR data on electric charge fluctuations

PHENIX

J. Mitchell, CPOD 2013

STAR

L. Kumar, Quark Matter 2012

Determination of T and μ_B

from then on all other cumulant ratios probe thermodynamic consistency, i.e. our basic assumption of a unique freeze-out line, equilibrium thermodyn., etc

Freeze-out parameter

taken at face value the comparison of current experimental data on conserved charge fluctuations with QCD thermodynamics does not yet provide a consistent thermal picture

However: this is just the beginning

- data are not yet corrected for efficiency
- acceptance cuts and finite volume effects (fluctuations) need to be better understood...

see: M. Kitazawa, last week

Freeze-out parameter

taken at face value the comparison of current experimental data on conserved charge fluctuations with QCD thermodynamics does not yet provide a consistent thermal picture


```
S. Mukherjee, CPOD2013
```

NOTE: This discrepancy also exists, when one would use for comparison cumulants calculated within the HRG model rather than QCD.

In fact, the agreement between QCD and HRG on moments up to 4th order is pretty good for temperatures below T=160 MeV.

Quadratic charge fluctuations

continuum extrapolated results: A. Bazavov et al (hotQCD), PRD86, 034509 (2012)

Some 4th order charge fluctuations

F. Karsch, NFQCD 2013 16

Critical behavior and higher order cumulants

 the breakdown of the HRG model description in the "vicinity of Tc" becomes obvious in properties of higher order cumulants,

pressure:
$$\frac{p}{T^4} = -h^{(2-\alpha)/\beta\delta} f_f(t/h^{1/\beta\delta}) - f_r(V, T, \vec{\mu})$$
 alpha
cumulants:
 $\chi^{(n)}_{B,\mu_B} \sim \begin{cases} m_q^{(2-\alpha-n/2)/\beta\delta} f_f^{(n/2)}(t/h^{1/\beta\delta}), \ \mu_B = 0 \end{cases}$
 $(2) +0.107$
 $(2) +0.107$
 $(2) +0.107$
 $(2) +0.107$
 $(2) +0.107$
 $(2) +0.107$
 $(2) +0.107$
 $(2) +0.107$
 $(2) +0.107$
 $(2) +0.107$
 $(2) +0.107$
 $(2) +0.107$
 $(2) +0.107$
 $(2) +0.107$
 $(2) +0.107$
 $(2) +0.107$
 $(2) +0.107$
 $(2) +0.107$
 $(2) +0.107$
 $(2) +0.107$
 $(2) +0.107$
 $(2) +0.107$
 $(2) +0.107$
 $(2) +0.107$
 $(2) +0.107$
 $(2) +0.107$
 $(2) +0.107$
 $(2) +0.107$
 $(2) +0.107$
 $(2) +0.107$
 $(2) +0.107$
 $(2) +0.107$
 $(2) +0.107$
 $(2) +0.107$
 $(2) +0.107$
 $(2) +0.107$
 $(2) +0.107$
 $(2) +0.107$
 $(2) +0.107$
 $(2) +0.107$
 $(2) +0.107$
 $(2) +0.107$
 $(2) +0.107$
 $(2) +0.107$
 $(2) +0.107$
 $(2) +0.107$
 $(2) +0.107$
 $(2) +0.107$
 $(2) +0.107$
 $(2) +0.107$
 $(2) +0.107$
 $(2) +0.107$
 $(2) +0.107$
 $(2) +0.107$
 $(2) +0.107$
 $(2) +0.107$
 $(2) +0.107$
 $(2) +0.107$
 $(2) +0.107$
 $(2) +0.107$
 $(2) +0.107$
 $(2) +0.107$
 $(2) +0.107$
 $(2) +0.107$
 $(2) +0.107$
 $(2) +0.107$
 $(2) +0.107$
 $(2) +0.107$
 $(2) +0.107$
 $(2) +0.107$
 $(2) +0.107$
 $(2) +0.107$
 $(2) +0.107$
 $(2) +0.107$
 $(2) +0.107$
 $(2) +0.107$
 $(2) +0.107$
 $(2) +0.107$
 $(2) +0.107$
 $(2) +0.107$
 $(2) +0.107$
 $(2) +0.107$
 $(2) +0.107$
 $(2) +0.107$
 $(2) +0.107$
 $(2) +0.107$
 $(2) +0.107$
 $(2) +0.107$
 $(2) +0.107$
 $(2) +0.107$
 $(2) +0.107$
 $(2) +0.107$
 $(2) +0.107$
 $(2) +0.107$
 $(2) +0.107$
 $(2) +0.107$
 $(2) +0.107$
 $(2) +0.107$
 $(2) +0.107$
 $(2) +0.107$
 $(2) +0.107$
 $(2) +0.107$
 $(2) +0.107$
 $(2) +0.107$
 $(2) +0.107$
 $(2) +0.107$
 $(2) +0.107$
 $(2) +0.107$
 $(2) +0.107$
 $(2) +0.107$
 $(2) +0.107$
 $(2) +0.107$
 $(2) +0.107$
 $(2) +0.107$
 $(2) +0.107$
 $(2) +0.107$
 $(2) +0.107$
 $(2) +0.107$
 $(2) +0.107$
 $(2) +0.107$
 $(2) +0.107$
 $(2) +0.107$
 $(2) +0.107$
 $(2) +0.107$
 $(2) +0.107$
 $(2) +0.107$
 $(2) +0.107$
 $(2) +0.107$
 $(2) +0.107$
 $(2) +0.107$
 $(2) +0.107$
 $(2) +0.107$
 $(2) +0.107$
 $(2) +0.107$
 $(2) +0.107$
 $(2) +0.107$
 $(2) +0.107$
 $(2) +0.107$
 $(2) +0.107$
 $(2) +0.107$
 $(2) +0.107$
 $(2) +0.107$
 $(2) +0.107$
 $(2) +0.107$
 (2)

Universal properties of the 6^{th} order cumulant at $\mu_B=0$

$$\mu_{B} = 0: \quad \chi_{6}^{B} = -(2\kappa_{B}t_{0}^{-1})^{3}h^{-(1+\alpha)/\Delta}f_{s}^{(3)}(z) + regular$$
in the chiral limit the singular part diverges: $\sim A_{\pm}|t|^{-(1+\alpha)}$
in the chiral limit the singular part diverges: $\sim A_{\pm}|t|^{-(1+\alpha)}$

$$\Delta z = z_{+} - z_{-} \simeq (t_{+} - t_{-})/h^{1/\beta\delta} \int_{0.4}^{0.4} \int_{0.4}^{0.4} \int_{0.4}^{0.4} \int_{0.4}^{0.4} \int_{0.4}^{0.4} \int_{0.4}^{1/\beta\delta} \int_{0.$$

F. Karsch, NFQCD 2013 18

6th order light and strange quark number cumulants

no evidence for
'typical' O(4) singular structure
regular contribution dominates

clear evidence for

- 'typical O(4) singular structure
- regular and singular contributions

6th order light and strange quark number cumulants

no evidence for
'typical' O(4) singular structure
regular contribution dominates

this is important for following the discussion on estimates of the critical point location !!

clear evidence for

'typical O(4) singular structure

regular and singular contributions

depth of the minimum at high T fixes maximal sinular contribution at low T !!! $\chi_6^{u,min}$

$$\frac{1}{\chi_6^{u,max}} = -0.7$$

F. Karsch, NFQCD 2013 20

6th order light quark number cumulants

On the interplay of regular and singular contributions – a guess, not a fit

regular part dominated by HRG at low-T

singular part generates dip at high-T

total=singular+regular: one may expect an overshooting of HRG by (at most) a factor 2 ??

Electric charge fluctuations in QCD and the HRG

Critical Point searches

cumulants of net proton number fluctuations

lattice QCD

Taylor expansion: R.V. Gavai, S. Gupta, PRD78, 114503 (2008)

JHEP 04, 204 (2004)

LGT attempts to find the critical point

since 10 years no progress along this line

Taylor expansion of the pressure

$$\begin{split} \frac{p}{T^4} &= \left. \frac{1}{VT^3} \ln Z(V,T,\mu_B,\mu_S,\mu_Q) \right. \\ &= \left. \sum_{i,j,k} \frac{1}{i!j!k!} \chi^{BQS}_{ijk} \left(\frac{\mu_B}{T} \right)^i \left(\frac{\mu_Q}{T} \right)^j \left(\frac{\mu_S}{T} \right)^k \right. \end{split}$$
generalized susceptibilities: $\left. \chi^{BQS}_{ijk} = \left. \frac{\partial^{i+j+k} p/T^4}{\partial \hat{\mu}^i_B \partial \hat{\mu}^j_Q \partial \hat{\mu}^k_S} \right|_{\mu=0} \end{split}$

- can be evaluated using standard MC simulation algorithms;
- valid up to radius of convergence: μ_c (critical point?)
- radius of convergence corresponds to a critical point only, iff

 $\chi_n > 0$ for all $n \ge n_0$

provides also a criterium to locate $T_c(\mu_c)$

Taylor expansion of the pressure

e.g., assume vanishing electric charge and strangeness chemical potential:

$$rac{p}{T^4} = rac{1}{VT^3} \ln Z(V,T,\mu_B) = \sum_{n,even} rac{1}{n!} \chi^B_n \left(rac{\mu_B}{T}
ight)^n$$
 $\Delta p/T^4 = (p(\mu_B) - p(0))/T^4 = P_2 \; \hat{\mu}^2_B + P_4 \; \hat{\mu}^4_B + \dots$

F. Karsch, NFQCD 2013 26

BNL-Bielefeld-CCNU, preliminary

Taylor expansion of the pressure

for $\mu_Q = \mu_S = 0$ the relative strength of the next-to-leading order correction to the pressure is controlled by χ_4^B/χ_2^B

 $T < T_c:$ $0.8 \leq \chi_4^B/\chi_2^B \leq 1.0$ $P_4/P_2 < 1 ext{ for } \mu_B \lesssim 3.5$

similar: S. Borsanyi et al, PRL 111, 062005 (2013)

e.g., assume vanishing electric charge and strangeness chemical potential:

$$\frac{p}{T^4} = \frac{1}{VT^3} \ln Z(V, T, \mu_B) = \sum_{n, even} \frac{1}{n!} \chi_n^B \left(\frac{\mu_B}{T}\right)^n$$

$$- \text{ radius of convergence: } \left(\frac{\mu_B}{T}\right)_{crit} = \lim_{n \to \infty} \sqrt{\left|\frac{(n+2)!\chi_n^B}{n!\chi_{n+2}^B}\right|}$$

e.g., assume vanishing electric charge and strangeness chemical potential:

$$\frac{p}{T^4} = \frac{1}{VT^3} \ln Z(V, T, \mu_B) = \sum_{n, even} \frac{1}{n!} \chi_n^B \left(\frac{\mu_B}{T}\right)^n$$

$$- \text{ radius of convergence: } \left(\frac{\mu_B}{T}\right)_{crit} = \lim_{n \to \infty} \sqrt{\left|\frac{(n+2)!\chi_n^B}{n!\chi_{n+2}^B}\right|}$$

 may use expansion of another quantity (Gavai&Gupta), e.g. baryon number susceptibility:

$$\chi_{2,\mu}^{B} = \sum_{n,even} \frac{1}{n!} \chi_{n+2}^{B} \left(\frac{\mu_{B}}{T}\right)^{n}$$

$$- \text{ radius of convergence: } \left(\frac{\mu_{B}}{T}\right)_{crit}^{\chi} = \lim_{n \to \infty} \sqrt{\left|\frac{n!\chi_{n}^{B}}{(n-2)!\chi_{n+2}^{B}}\right|}$$

may use another estimator:

$$\begin{pmatrix} \frac{\mu_B}{T} \end{pmatrix}_{crit} = \lim_{n \to \infty} \sqrt{ \left| \frac{(n+2)!\chi_n^B}{n!\chi_{n+2}^B} \right|} = \lim_{n \to \infty} \left| \frac{(n+2)!\chi_2^B}{2!\chi_{n+2}^B} \right|^{1/n}$$

$$\begin{pmatrix} \frac{\mu_B}{T} \end{pmatrix}_{crit}^{\chi} = \lim_{n \to \infty} \sqrt{ \left| \frac{n!\chi_n^B}{(n-2)!\chi_{n+2}^B} \right|} = \lim_{n \to \infty} \left| \frac{n!\chi_2^B}{\chi_{n+2}^B} \right|^{1/n}$$

$$pressure series suscept series suscept series suscept series are not unique for $n < \infty$

$$\sim 1/n^2 \quad (\sim 30\% \text{ for n=6})$$

$$basic observables need to deviate from HRG like n^2$$

$$FK \text{ et al., Phys. Lett. B698, 256 (2011) }$$$$

F. Karsch, NFQCD 2013 30

Estimates of the radius of convergence

a challenging prediction from susceptibility series:

$$\left|rac{\mu_B}{T}
ight|_{crit}^{\chi}\equiv r_n^{\chi}=\sqrt{\left|rac{n(n-1)\chi_n^B}{\chi_{n+2}^B}
ight|}$$

suggests large deviations from HRG in the hadronic phase

F. Karsch, NFQCD 2013 31

Estimates of the radius of convergence

F. Karsch, NFQCD 2013 32

basic observables

need to deviate from HRG like n^2

However, so far no evidence for large enhancement over HRG for $T < T_c$...remember:

Conserved charge fluctuations in QCD and HIC

4th order cumulant: A dip in the kurtosis ?

$$\begin{split} \mu_B > 0: & \chi^B_{4,\mu} = -3(2\kappa_B t_0^{-1})^2 h^{-\alpha/\Delta} f_f^{(2)}(z) \\ & -6(2\kappa_B t_0^{-1})^3 (\hat{\mu}_B^c)^2 h^{-(1+\alpha)/\Delta} f_f^{(3)}(z) \\ & -(2\kappa_B t_0^{-1} \hat{\mu}_B^c)^4 h^{-(2+\alpha)/\Delta} f_f^{(4)}(z) + \text{regular} \\ & \text{dominates in the chiral limit, or if} \\ & \text{dominates in the chiral limit, or if} \\ & \hat{\mu}_B^c = \mu_B^c/T \gtrsim 1 \\ & \frac{\chi^{B,min}_{4,\mu}}{\chi^{max-}_{4,\mu}} \simeq -25 \\ & \longrightarrow \chi^B_4(\mu_B) < 0 \\ & \text{B.Friman, FK, K.Redlich, V.Skokov, Eur. Phys. J. C71, 1694 (2011)} \end{split}$$

F. Karsch, NFQCD 2013 34

4th order cumulant (kurtosis) and the critical point

in the vicinity of the critical point the kurtosis will be negative in a certain T, muB region $\kappa_B < 0$ M. Stephanov, PRL 107, 052301 (2011)

≜ t $\kappa_B > 0$ mapping of the Ising -0.2 0.0 variables t, h on the crossover h $\kappa_B > 0$ T, μ_B plane is non-trivial C 2nd order $\kappa_B > 0$ **1st order**

4th order cumulant (kurtosis) and the critical point

in the vicinity of the critical point the kurtosis will be negative in a certain T, muB region M. Stephanov, PRL 107, 052301 (2011) $\kappa_B < 0$ t $\kappa_B > 0^{\circ}$ mapping of the Ising variables t, h on the crossover h $\kappa_B > 0$ T, μ_B plane is non-trivial κ_{B} -2nd order generically, expect: T_{CP} $\kappa_B > 0$ for $T < T_{CP}$ $\kappa_B > 0$ **1st order** expect all cumulants to be positive on the line of fixed $T \equiv T_{CP}$ prerequisite for well-behaved estimates of the location of the critical

point based on the radius of convergence of the Taylor series for $\,\chi_{B,\mu}\,$

Kurtosis on the freeze-out curve

of regular terms and the nonuniversal scales requires lattice QCD a dip in the kurtosis seems to be generic: whether or not it becomes negative depends on the magnitude of regular terms in the QCD partition function (pressure)

Conclusions

- approximate agreement with HRG model calculations at freeze-out and sensitivity to O(4) criticality in the crossover region are not inconsistent with each other
- 6th order cumulants are sensitive to O(4) scaling but will pick up only a small singular contribution below Tc. This favors estimates for the location of a critical endpoint at large μ_B/T
- a dip in the kurtosis*variance is likely to show up on the freeze-out line in the vicinity of a critical endpoint

Chiral model and negative $\chi^{B}_{4} / \chi^{B}_{2}$:

