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Goal: constrain models of initial conditions from data
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Qutline

Observables: correlations and how we
understand them as anisotropic flow

Anisotropic flow as a hydrodynamic
response to the initial geometry

Systematic method for constraining models
of initial conditions

Results for RHIC and LHC



What we see: (|) particles

Trajectories of
charged particles:

polar angle O
(or pseudorapidity
N=-In tan 6/2)

Pb+Pb @ sqrt(s) = 2.76 ATeV

2010-11-08 11:30:46

azimuthal angle ¢

Event : 0x00000000D3BBEG93




What we see: (2) correlations

Number of pairs of particles versus relative azimuthal angle and
bseudorapidity in central Pb-Pb collisions at LHC

(a) cms fL dt=3.1ub"
PbPb\ s, = 2.76 TeV, 0-5% centrality
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CMS 105.2435%

Characteristic wave
structure of long-range
correlations

Current theory status:
particles emitted
independently with
probability depending on
azimuth, not on rapidity.



Central to peripheral collisions
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Anisotropic flow

* All information is contained in the single-particle
momentum distribution, in particular the azimuthal

() distribution
AN/dD=5 V,ein®

* V,=anisotropic flow
Vao=elliptic flow: largest Fourier harmonic
Vi=triangular flow: next-to-largest

* The observed pair correlation is the convolution of
two single-particle distributions, averaged over initial

geometries: {cos nAd) = {|V.|%)
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Hydro calculations

® Use some model for the initial density profile

® Solve relativistic hydrodynamics using this initial
condition (involves equation of state & viscosity)

® Transform the continuous fluid into discrete,
independent particles, and compute V,



Symmetries and flow

Initial profile Final distribution

b — P+TT symmetry: onlyVa, V4

b — P+2T1T/3 symmetry: only Vs,




From initial anisotropies
to anisotropic flow

A particular Monte-Carlo model typically predicts in every
event an irregular initial transverse density profile p(x,y)

Fourier transform p(x,y):

[re"®p(r,d)rdrdd
Jrr p(nhd)rdrdd

€,=initial eccentricity

IP-Glasma
1=0.2 fm/c

8 En=

- €s=initial triangularity

By symmetry, one expects
that v, scales approximately

like €,

(Fale Jeon SC’//’Ien,ée 1301.5593



Elliptic flow v2 versus
initial eccentricity &>
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v2 is almost perfectly linear in &



Triangular flow v3 versus
initial triangularity €3

c(eg,v5) =0.893

c(€3,v5) =0.955
C, =0.088
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v3 is also strongly correlated with &3
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Linear-response hydro

va=(CH €

v (C3 &3

Is a good approximation to the numerical solution
of hydrodynamics with an arbitrary initial profile

Relates the initial profile to the measured flow
through a hydrodynamic response which
decreases with viscosity
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Viscous hydro versus RHIC data

Letzein Komadschke 0504.401s
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Two different models of initial conditions reproduce v; data
equally well, at the expense of tuning the viscosity
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Combining v2 and v3, one can rule

out models of initial conditions
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Once the viscosity is adjusted to match vz, some models
of initial conditions reproduce v3 data, others don’t.
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Systematic test of
initial-state models

* We just invert the linear response:

€2 = v/ Cy
€3 = v3/C3

* Take vy, vz from measurements at RHIC and LHC

e Compute C,, Cs3 using viscous hydrodynamics

e Carefully estimate the uncertainty on C, C3 by
varying arbitrary parameters in the hydro calculation

* Obtain the allowed area in the (€2,&3) plane

* Compute (€2,€3) for several initial-state models, see if
they fall within allowed area.
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RHIC (200 GeV) & LHC (2.76 TeV) data
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Data: technical details

® Experiments measure all charged hadrons,
each with its own kinematic cuts (in

centrality, p;, N, AN).

® Data are averaged over many events.
Averages of vy, v3 are rms averages,
therefore our results for €, €3 also pertain

to rms averages: v (€)% , v {(&3)») .



Hydro: technical details

We use the 2+1d viscous hydro by
KRomatschke & Komadschle 02061822

Smooth initial conditions (e.g. optical Glauber for
v2, deformed optical Glauber for v3)

Initial temperature and freeze-out temperature
adjusted to match observed multipliticity and <p¢>

After freeze-out, hadronic decays but no
rescattering.



Sources of uncertainty

Viscosity over entropy ratio n/s

Initial time (~initial flow)

Initial profile: we compute €, with entropy density
and energy density weighting.

Viscous (=off-equilibrium) correction to the
momentum distribution at freeze-out (linear vs.
quadratic ansatz).
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Uncertainties in the hydro response
(central Pb-Pb at LHC)

O to=1 fm/c, linear
015 W to=1fm/c, quadratic

B t0=0.5 fm/c, quadratic

N

QW

vy

-

—

0.1

0.1 ' 0.15
rms &3

Each symbol = different hydro calculation — uncertainty band
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Uncertainties in the hydro response
(central Pb-Pb at LHC)

O to=1fm/c, linear
015 W to=1fm/c, quadratic
3 t0o=0.5 fm/c, quadratic
o
) =
e bt
= g K
0.1 . &
N/s
0.1 0D
rms &3

Allowed band: £;/(€3)*¢~constant



Initial-state models

MC-Glauber

IP-Glasma
1=0.2 fm/c

(Fale Jeon SCﬁen,ée 1301.5593
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Initial-state models

® VWhat matters here is not the detailed structure,

but just:
® ¢, -~ eccentricity of the overlap area .

® &3~ magnitude of fluctuations
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Initial-state Monte-Carlo models

® MC-Glauber: energy typically localized around
participant nucleons.

® QCD-inspired models: generally predict larger €.
/_qpp/ \/enaﬁopd/an nwc!/-24/ 060902
Yirano et al nec!-24/ 081046
® Several QCD-inspired models:
- MC-KLN (aka CGQ) Drescher Nara nwcl/-2Ah/ 061017
- MC-rcBK A/bacete Ditritree 101.514
- IP-Glasma scsenke 7ridedy \/enaﬁopa/an 1202664
- DIPSY ﬁenééarg 1OS . 4S (2
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Constraining initial-state
models at LHC
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Constraining initial-state
models at LHC

Strong increase of &; driven by geometry of overlap area
Mild increase of €3 driven by decrease in system size «|/+/N

‘ 0.5 i & ® e s
: - L = ot
@ _ < [P Glasma
' 0.3 A MCrcBK
i \ DIPSY
‘ 0.1 30-40%
0.1 0.2 0.3

® o &
30



1.2/

1.0/

04

0.2

All centralities at once:

testing the ratio £/(€3)%¢
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Constraining initial-state
models at RHIC
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Constraining initial-state
models at RHIC
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Constraining initial-state
models at RHIC
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Constraining initial-state
models at RHIC
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Constraining initial-state
models at RHIC
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Constraining initial-state
models at RHIC
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All centralities at once:
testing the ratio £/(€3)%°
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Summary

® Simple test for initial-state models at LHC:
numerical value of €,/(€3)"¢

® All models in the ballpark but some can
already be excluded.

® Error bar can be reduced by improving the

hydro calculation, in particular by taking a
more realistic initial profile
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Backup
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Zooming into central collisions

Between 0 and 5%, hydro response = constant
only € and €3 can change

e v.{2, [Anl > 1}

POSSE [ > 1) V2 MC-Glauber excluded
oal o oo ™ En 7~ <& by vz data alone
0.025
0.02}
0.015 |
. 5 5
centrality percentile
ALTCE 105.3545
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