Constraining models of initial conditions with flow data

NFQCD, Dec. 3, 2013 Yukawa Institute, Kyoto

Jean-Yves Ollitrault, Institut de physique théorique, Saclay (France) http://ipht.cea.fr

based on: Retinskaya Luzum JYO, 1311.5339

I. Initial conditions

2. Hydrodynamic expansion

2. Hydrodynamic expansion

Goal: constrain models of initial conditions from data

Outline

- Observables: correlations and how we understand them as anisotropic flow
- Anisotropic flow as a hydrodynamic response to the initial geometry
- Systematic method for constraining models of initial conditions
- Results for RHIC and LHC

What we see: (1) particles

Trajectories of charged particles:

polar angle θ (or pseudorapidity η =-ln tan θ /2)

azimuthal angle ϕ

What we see: (2) correlations

Number of pairs of particles versus relative azimuthal angle and pseudorapidity in central Pb-Pb collisions at LHC

- Characteristic wave structure of long-range correlations
 - Current theory status: particles emitted independently with probability depending on azimuth, not on rapidity.

Central to peripheral collisions

Anisotropic flow

 All information is contained in the single-particle momentum distribution, in particular the azimuthal (φ) distribution

 $dN/d\phi = \sum_{n} V_{n} e^{in\phi}$

- V_n=anisotropic flow
 V₂=elliptic flow: largest Fourier harmonic
 V₃=triangular flow: next-to-largest
- The observed pair correlation is the convolution of two single-particle distributions, averaged over initial geometries: $\langle \cos n\Delta \phi \rangle = \langle |V_n|^2 \rangle$

Hydro calculations

- Use some model for the initial density profile
- Solve relativistic hydrodynamics using this initial condition (involves equation of state & viscosity)
- Transform the continuous fluid into discrete, independent particles, and compute V_n

Symmetries and flow

Initial profile

Final distribution

 $\phi \rightarrow \phi + \pi$ symmetry: only V_2, V_4, V_6

 $\phi \rightarrow \phi + 2\pi/3$ symmetry: only V_3, V_6

From initial anisotropies to anisotropic flow

A particular Monte-Carlo model typically predicts in every event an irregular initial transverse density profile $\rho(x,y)$

Gale Jeon Schenke 1301.5893

Fourier transform $\rho(x,y)$:

$$\epsilon_{n} \equiv \frac{\int r^{n} e^{in\phi} \rho(r,\phi) r dr d\phi}{\int r^{n} \rho(r,\phi) r dr d\phi}$$

 $\epsilon_2 \equiv initial \ eccentricity$ $\epsilon_3 \equiv initial \ triangularity$

By symmetry, one expects that v_n scales approximately like ϵ_n

Elliptic flow v₂ versus initial eccentricity E₂

 v_2 is almost perfectly linear in ε_2

Triangular flow v₃ versus initial triangularity E₃

 v_3 is also strongly correlated with ε_3

Linear-response hydro

 $v_2 \approx C_2 \epsilon_2$ $v_3 \approx C_3 \epsilon_3$

Is a good approximation to the numerical solution of hydrodynamics with an arbitrary initial profile

Relates the initial profile to the measured flow through a hydrodynamic response which decreases with viscosity

Viscous hydro versus RHIC data

Luzum Romatschke 0804.4015

Glauber

CGC

Two different models of initial conditions reproduce v_2 data equally well, at the expense of tuning the viscosity

Combining v₂ and v₃, one can rule out models of initial conditions

Elliptic flow

Triangular flow

Once the viscosity is adjusted to match v₂, some models of initial conditions reproduce v₃ data, **others don't**.

Systematic test of initial-state models

• We just invert the linear response:

 $\frac{\varepsilon_2 \approx v_2/C_2}{\varepsilon_3 \approx v_3/C_3}$

- Take v_2 , v_3 from measurements at RHIC and LHC
- Compute C₂, C₃ using viscous hydrodynamics
- Carefully estimate the uncertainty on C₂, C₃ by varying arbitrary parameters in the hydro calculation
- Obtain the allowed area in the $(\varepsilon_2, \varepsilon_3)$ plane
- Compute (E2,E3) for several initial-state models, see if they fall within allowed area.

RHIC (200 GeV) & LHC (2.76 TeV) data

ALICE 1105.3865

Data: technical details

- Experiments measure all charged hadrons, each with its own kinematic cuts (in centrality, p_t , η , $\Delta \eta$).
- Data are averaged over *many* events. Averages of v₂, v₃ are rms averages, therefore our results for ε_2 , ε_3 also pertain to rms averages: $\sqrt{\langle (\varepsilon_2)^2 \rangle}$, $\sqrt{\langle (\varepsilon_3)^2 \rangle}$.

Hydro: technical details

- We use the 2+1d viscous hydro by Romatschke & Romatschke 0706.1522
- Smooth initial conditions (e.g. optical Glauber for v2, deformed optical Glauber for v3)
- Initial temperature and freeze-out temperature adjusted to match observed multipliticity and <pt>
- After freeze-out, hadronic decays but no rescattering.

Sources of uncertainty

- Viscosity over entropy ratio η/s
- Initial time (~initial flow)
- Initial profile: we compute ε_n with entropy density and energy density weighting.
- Viscous (=off-equilibrium) correction to the momentum distribution at freeze-out (linear vs. quadratic ansatz).

Uncertainties in the hydro response (central Pb-Pb at LHC)

Each symbol = different hydro calculation \rightarrow uncertainty band

Uncertainties in the hydro response (central Pb-Pb at LHC)

Initial-state models

Initial-state models

- What matters here is not the detailed structure, but just:
- $\epsilon_2 \sim \text{eccentricity of the overlap area}$
- $\epsilon_3 \sim \text{magnitude of fluctuations}$

Initial-state Monte-Carlo models

- MC-Glauber: energy typically localized around participant nucleons.
- QCD-inspired models: generally predict larger ε₂.
 Lappi Venugopalan nucl-th/0609021
 Hirano et al nucl-th/051046
- Several QCD-inspired models:
 MC-KLN (aka CGC) Drescher Nara nucl-th/061017
 - MC-rcBK Albacete Dumitru 1011.5161
 - IP-Glasma Schenke Tribedy Venugopalan 1202.6646
 - DIPSY Flensburg 1108.4862

All centralities at once: testing the ratio $\frac{\epsilon_2}{(\epsilon_3)^{0.6}}$

All centralities at once: testing the ratio $\frac{\epsilon_2}{(\epsilon_3)^{0.5}}$

Summary

- Simple test for initial-state models at LHC: numerical value of E₂/(E₃)^{0.6}
- All models in the ballpark but some can already be excluded.
- Error bar can be reduced by improving the hydro calculation, in particular by taking a more realistic initial profile

Backup

Zooming into central collisions Between 0 and 5%, hydro response \approx constant only ϵ_2 and ϵ_3 can change

