

Extracting the bulk viscosity

of the quark-gluon plasma

Gabriel S. Denicol

with:

J.B. Rose, J.F. Paquet, I. Kozlov, M. Luzum, S. Jeon, C. Gale

December 4, Kyoto, Japan New Frontiers in QCD 2013

--- Insight into QCD matter from heavy-ion collisions ---

Main Motivation

• Relativistic **fluid dynamics** has played a key role in our current understanding of the novel "**near perfect**" fluid behavior displayed by the Quark-Gluon Plasma (QGP)

Is there any point in improving the current fluid-dynamical modeling?

Basics of fluid dynamics

Energy-momentum conservation

 $\partial_{\mu}T^{\mu\nu} = 0$

Charge conservation

$$\partial_{\mu}N^{\mu} = 0$$

$$N^{\mu} = nu^{\mu} + n^{\mu},$$

$$T^{\mu\nu} = \varepsilon u^{\mu} u^{\nu} / - \Delta^{\mu\nu} (P_0 + \Pi) + \pi^{\mu\nu}$$

Particle
diffusion
current
Bulk viscous
pressure
tensor

Need to be closed!

Spatial projector $\Delta^{\mu\nu} = g^{\mu\nu} - u^{\mu}u^{\nu}$ $u_{\mu}u^{\mu} = 1$

What everyone does

- ➡ Most simulations neglect nonlinear terms
- ➡ Most simulations neglect bulk viscous pressure
- ➡ All simulations neglect heat flow

$$\tau_{\pi}\dot{\pi}^{\langle\mu\nu\rangle} + \pi^{\mu\nu} = 2\eta\sigma^{\mu\nu} - \frac{4}{3}\tau_{\pi}\pi^{\mu\nu}\theta$$

Majority of conclusions of our field are based on these equations (e.g., MUSIC 1.0, Ohio Group)

Is there any point in improving this?

Sources of dissipation

Bulk

Resistance to expansion

Resistance to deformation

usually ignored Bulk

Shear

Resistance to expansion

Why?

Karsh&Kharzeev&Tuchin Noronha&Noronha&Greiner

Hirano&Gyulassy

0.3 $\zeta/s 0.2$ 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 1.2 1.21.6

Bulk viscosity Shear viscosity

some estimates ...

because it's small?

HGas

0.4

because it's small? some estimates ...

Bulk viscosity

Shear viscosity

But in the region of interest, we don't really know ...8

Questions addressed

Can bulk viscosity have an effect on flow?

✓ Is the effect the same as the one from shear viscosity?

✓ Can bulk viscosity change the previous conclusions obtained for shear viscosity?

everything in ultracentral collisions; 0-1% centrality; LHC lowest energy

What you will see in this talk **Instead of the traditional equation** $\tau_{\pi}\dot{\pi}^{\langle\mu\nu\rangle} + \pi^{\mu\nu} = 2\eta\sigma^{\mu\nu} - \frac{4}{3}\tau_{\pi}\pi^{\mu\nu}\theta$

Inclusion of bulk viscous pressure, shear-stress tensor, and all couplings MUSIC 2.0

$$\begin{split} \dot{\Pi} &+ \frac{\Pi}{\tau_{\Pi}} = -\beta_{\Pi} \theta - \delta_{\Pi\Pi} \Pi \theta + \varphi_{1} \Pi^{2} + \lambda_{\Pi\pi} \pi^{\mu\nu} \sigma_{\mu\nu} + \varphi_{3} \pi^{\mu\nu} \pi_{\mu\nu} ,\\ \dot{\pi}^{\langle \mu\nu\rangle} &+ \frac{\pi^{\mu\nu}}{\tau_{\pi}} = 2\beta_{\pi} \sigma^{\mu\nu} + 2\pi_{\alpha}^{\langle \mu} \omega^{\nu\rangle\alpha} - \delta_{\pi\pi} \pi^{\mu\nu} \theta + \varphi_{7} \pi_{\alpha}^{\langle \mu} \pi^{\nu\rangle\alpha} - \tau_{\pi\pi} \pi_{\alpha}^{\langle \mu} \sigma^{\nu\rangle\alpha} \\ &+ \lambda_{\pi\Pi} \Pi \sigma^{\mu\nu} + \varphi_{6} \Pi \pi^{\mu\nu} .\end{split}$$

Equations of motion obtained from kinetic theory

Transport equations

Inclusion of bulk viscous pressure, shear-stress tensor, and all couplings

$$\begin{split} \dot{\Pi} &+ \frac{\Pi}{\tau_{\Pi}} = -\beta_{\Pi} \theta - \delta_{\Pi\Pi} \Pi \theta + \varphi_{1} \Pi^{2} + \lambda_{\Pi\pi} \pi^{\mu\nu} \sigma_{\mu\nu} + \varphi_{3} \pi^{\mu\nu} \pi_{\mu\nu} ,\\ \dot{\pi}^{\langle \mu\nu\rangle} &+ \frac{\pi^{\mu\nu}}{\tau_{\pi}} = 2\beta_{\pi} \sigma^{\mu\nu} + 2\pi_{\alpha}^{\langle \mu} \omega^{\nu\rangle\alpha} - \delta_{\pi\pi} \pi^{\mu\nu} \theta + \varphi_{7} \pi_{\alpha}^{\langle \mu} \pi^{\nu\rangle\alpha} - \tau_{\pi\pi} \pi_{\alpha}^{\langle \mu} \sigma^{\nu\rangle\alpha} \\ &+ \lambda_{\pi\Pi} \Pi \sigma^{\mu\nu} + \varphi_{6} \Pi \pi^{\mu\nu} . \end{split}$$

Second-Order Nonlinear source terms

Bulk viscous pressure

Coupling between bulk viscous pressure and shear-stress tensor

Viscous hydro works very well

D. Bazow, U. Heinz, M. Strickland, arxiv:1311.6720

In contrast to the naive expectation: even at η/s~10, second order viscous hydro seems to work

Coefficients employed

$$\begin{split} \dot{\Pi} &+ \frac{\Pi}{\tau_{\Pi}} \;=\; -\beta_{\Pi} \theta - \delta_{\Pi\Pi} \Pi \theta + \varphi_{1} \Pi^{2} + \lambda_{\Pi\pi} \pi^{\mu\nu} \sigma_{\mu\nu} + \varphi_{3} \pi^{\mu\nu} \pi_{\mu\nu} \;, \\ \dot{\pi}^{\langle \mu\nu\rangle} &+ \frac{\pi^{\mu\nu}}{\tau_{\pi}} \;=\; \frac{4}{2} \beta_{\pi} \sigma^{\mu\nu} + 2\pi_{\alpha}^{\langle \mu} \omega^{\nu\rangle\alpha} - \delta_{\pi\pi} \pi^{\mu\nu} \theta + \varphi_{7} \tau_{\alpha}^{\langle \mu} \pi^{\nu\rangle\alpha} - \tau_{\pi\pi} \pi_{\alpha}^{\langle \mu} \sigma^{\nu\rangle\alpha} \\ &+ \lambda_{\pi\Pi} \Pi \sigma^{\mu\nu} + \varphi_{6} \Pi \pi^{\mu\nu} . \end{split}$$

Transport coefficients computed within the 14-moment approximation

$$\beta_{\pi} = \frac{\varepsilon_{0} + P_{0}}{5}, \ \delta_{\pi\pi} = \frac{4}{3}\tau_{\pi} , \ \tau_{\pi\pi} = \frac{10}{7}\tau_{\pi} , \ \varphi_{7} = \frac{9}{70P_{0}}\tau_{\pi} .$$
$$\beta_{\Pi} = \frac{\zeta}{\tau_{\Pi}} = 14.55 \times \left(\frac{1}{3} - c_{s}^{2}\right)^{2} (\varepsilon_{0} + P_{0}) + \mathcal{O}\left(z^{5}\right),$$
$$\frac{\delta_{\Pi\Pi}}{\tau_{\Pi}} = 1 - c_{s}^{2} + \mathcal{O}\left(z^{2}\ln z\right) , \qquad z \equiv m/T,$$
$$\frac{\lambda_{\Pi\pi}}{\tau_{\Pi}} = \frac{8}{5} \left(\frac{1}{3} - c_{s}^{2}\right) + \mathcal{O}\left(z^{4}\right) , \qquad 13$$

Viscosity Ansatz

Shear viscosity

 $\frac{\eta}{s} = \text{const}$ "effective" shear viscosity

Bulk viscosity

$$\frac{\zeta}{s} = \frac{\text{const}}{\frac{1}{b}} \times \frac{\eta}{s} \left(\frac{1}{3} - c_s^2\right)^2$$

inspired in the weakly coupled limit

Why ultracentral? we don't need to do EbE

Works for n=2 and n=3

15

In ultracentral collisions: Works for all of them

Gardim&Grassi&Luzum&Ollitrault, arxiv:1111.6538

Same as Luzum&Ollitrault, arxiv:1210.6010

Similar philosophy to Retinskaya&Luzum&Ollitrault, arxiv:1311.5339 What we do:

We compute this coefficient for an arbitrary IC, but with the **correct multiplicity** and **average pT**

Simulation

We solve the fluid-dynamical equations using a relativistic version of the KT algorithm – MUSIC Schenke&Jeon&Gale Phys.Rev. C82 (2010) 014903

Freeze-out via Cooper-Frye, T=140 MeV

✓ δf from Monnai&Hirano, Phys. Rev. C80 (2009) 054906

Detailed study of $\delta f \rightarrow J.Noronha-Hostler$ *et al*

Phys. Rev. C88 (2013) 044916

✓ lQCD + HRG EoS by Huovinen&Petrescky

Nucl.Phys. A837 (2010) 26-53

✓ τ_0 =1 fm, equilibrium

Data from CMS: ultracentral collisions

 $v_2 \sim v_3$

hard to get with hydro

Effect of bulk viscous pressure (1)

Bulk Only

$$\tau_{\Pi}\dot{\Pi} + \Pi = -\zeta\theta - \left(1 - c_s^2\right)\tau_{\Pi}\Pi\theta$$

Shear Only

$$\begin{aligned} \tau_{\pi} \dot{\pi}^{\langle \mu\nu\rangle} + \pi^{\mu\nu} &= 2\eta \sigma^{\mu\nu} + 2\pi_{\alpha}^{\langle \mu} \omega^{\nu\rangle\alpha} - \frac{4}{3} \tau_{\pi} \pi^{\mu\nu} \theta \\ &+ \frac{18}{35} \tau_{\pi} \frac{\pi_{\alpha}^{\langle \mu} \pi^{\nu\rangle\alpha}}{\varepsilon_{0} + P_{0}} - \frac{10}{7} \tau_{\pi} \pi_{\alpha}^{\langle \mu} \sigma^{\nu\rangle\alpha}. \end{aligned}$$

assume effective viscosities:

$$\frac{\eta}{s} = \text{const}$$
$$\frac{\zeta}{s} = \text{const}$$

19

Effect of bulk viscous pressure

MUSIC 2.0

Effect of bulk viscous pressure

Effect of bulk viscous pressure (2)

Complete equations

$$\begin{split} \tau_{\Pi}\dot{\Pi} + \Pi &= -\zeta\theta - \left(1 - c_s^2\right)\tau_{\Pi}\Pi\theta + \frac{8}{5}\left(\frac{1}{3} - c_s^2\right)\tau_{\Pi}\pi^{\mu\nu}\sigma_{\mu\nu} ,\\ \tau_{\pi}\dot{\pi}^{\langle\mu\nu\rangle} + \pi^{\mu\nu} &= 2\eta\sigma^{\mu\nu} + 2\tau_{\pi}\pi_{\alpha}^{\langle\mu}\omega^{\nu\rangle\alpha} - \frac{4}{3}\tau_{\pi}\pi^{\mu\nu}\theta - \frac{10}{7}\tau_{\pi}\pi_{\alpha}^{\langle\mu}\sigma^{\nu\rangle\alpha} \\ &+ \frac{18}{35}\tau_{\pi}\frac{\pi_{\alpha}^{\langle\mu}\pi^{\nu\rangle\alpha}}{\varepsilon_0 + P_0} + \frac{6}{5}\tau_{\pi}\Pi\sigma^{\mu\nu}. \end{split}$$

Effect of bulk viscous pressure

$$\frac{\zeta}{s} = b \times \frac{\eta}{s} \left(\frac{1}{3} - c_s^2\right)^2$$
 b=0, 15, 30, 45, 60, 75

MUSIC 2.0

0-1% - LHC

Comparison with data (KLN)

 $\zeta/s = constant$

Comparison with data (Glauber)

$$\frac{\zeta}{s} = \mathbf{b} \times \frac{\eta}{s} \left(\frac{1}{3} - c_s^2\right)^2$$

MUSIC 2.0

Comparison with data (KLN)

$$\frac{\zeta}{s} = \mathbf{b} \times \frac{\eta}{s} \left(\frac{1}{3} - c_s^2\right)^2$$

MUSIC 2.0

0-1% - LHC

Summary/conclusions

We studied the effect of bulk viscosity and nonlinear terms on the azimuthal momentum anisotropies

✓ We see a clear effect of bulk viscosity on flow; specially on v2 and v3

✓ Ultracentral collisions are a challenge to hydro models

Ongoing:

- X Actual extraction of bulk viscosity from data
- ✗ Inclusion of heat flow
- X Effects on photons and dileptons; and pPb

My old calculation (with Kodama)

Temperature profile (Glauber IC, $\tau_0 = 0.6$ fm)

Ideal - 2.1 fm **Viscous -** 2.1 fm

For a dilute gas

In terms of Knudsen number Kn =

 $\ell_{\rm micro}$

In a heavy ion collision ... $\operatorname{Kn} \sim \tau_{\pi} \nabla_{\mu} u^{\mu} \sim \frac{\eta}{s} \frac{1}{T\tau} \sim 0.2 - 1$

Higher order terms can be important ...

Heavy ion Collisions

• **smallest** fluid ever created • **largest** gradients ever seen

• expansion rate of the order of the relaxation time

 From the fluid-dynamical point of view, challenging to describe

Effect of nonlinear terms

usual

$$\tau_{\pi}\dot{\pi}^{\langle\mu\nu\rangle} + \pi^{\mu\nu} = 2\eta\sigma^{\mu\nu} - \frac{4}{3}\tau_{\pi}\pi^{\mu\nu}\theta$$

with nonlinear terms

$$\begin{aligned} \tau_{\pi} \dot{\pi}^{\langle \mu\nu\rangle} + \pi^{\mu\nu} &= 2\eta \sigma^{\mu\nu} + 2\pi^{\langle \mu}_{\alpha} \omega^{\nu\rangle\alpha} - \frac{4}{3} \tau_{\pi} \pi^{\mu\nu} \theta \\ &+ \frac{18}{35} \tau_{\pi} \frac{\pi^{\langle \mu}_{\alpha} \pi^{\nu\rangle\alpha}}{\varepsilon_{0} + P_{0}} - \frac{10}{7} \tau_{\pi} \pi^{\langle \mu}_{\alpha} \sigma^{\nu\rangle\alpha}. \end{aligned}$$

can we see a difference?

Effect of nonlinear terms

MUSIC 2.0