JET TOMOGRAPHY AT RHIC AND LHC

— where are we today?

Thorsten Renk

JET TOMOGRAPHY

- the original idea
- what are the difficulties?

MODELLING JETS

- a summary of constraints from data

TOMOGRAPHY TODAY AND TOMORROW

- even-by-event hydrodynamics
- next-generation observables

CONCLUSIONS

Tomography 1.0

Basic idea:

- the rate of hard processes in p-p collisions can reliably be calculated in pQCD
- \rightarrow since they happen at $\tau \sim 1/P_T^{hard}$ they come before medium formation at $\sim 1/T$ \rightarrow thus hard processes in A-A should be (up to nPDFs) independent of medium
- \Rightarrow this is experimentally verified, hard γ, Z, W scale indeed with N_{bin}

The rate of hard parton production in A-A collisions can be reliably calculated in pQCD.

- while γ, Z, W have negligible final state interaction, quarks and gluons do not \rightarrow expect hard hadron spectra, jets to be modified by interaction with QCD medium
- \Rightarrow if parton-medium interaction is known, allows to measure medium density evolution \rightarrow this is the original tomography idea but do we know the interaction?
- \Rightarrow if medium density evolution is known, allows to measure parton-medium interaction

Tomography in practice is complicated, because there are no perfect knowns and unknowns.

TOMOGRAPHY IN PRACTICE

Example: tomographic measurement of ϵ_2 (spatial medium eccentricity)

- study the attenuation of the hadron yield as a function of reaction plane angle
- \rightarrow identify low P_T reaction plane (event plane, . . .) event by event
- \rightarrow bin high P_T yield as function of $\phi,$ can only be done averaged over many events

 \Rightarrow expect more quenching out of plane (long path) than in plane (short path)

Idea: deduce ϵ_2 from the yield difference in-plane to out of plane

TOMOGRAPHY IN PRACTICE

Test case: weak vs. strong coupling interaction, vCGC vs. 3+1d ideal hydro \rightarrow results in a 2x2 matrix of models representing state of the art 2 years ago

 \Rightarrow data on hadronic in-plane vs. out of plane R_{AA} is described for \rightarrow vCGC and strong coupling or 3+1d ideal and weak coupling

Only combinations of models are constrained, no straightforward ϵ_2 measurement possible.

Ambiguities

Systematic approach: generalize to larger model matrices

model	elastic L	radiative L^2	AdS L^3	rad. finite E	min. Q_0
3+1d ideal	fails	works	fails	fails	works
2+1d ideal	fails	fails	marginal	fails	fails
2+1d vCGC	fails	marginal	works	fails	marginal
2+1d vGlb	fails	marginal	works	fails	marginal

 \Rightarrow some parton-medium interaction scenarios never work, there is information!

Two strategies:

- generalize model matrix approach to include more observables
- \rightarrow this is really expensive to do in terms of time and numerics

or

- identify observables which are insensitive to choice of hydro
- \rightarrow constrain parton-medium interaction based on those
- \rightarrow then use the constrained interaction to consider tomographic observables

This talk will follow the second strategy.

PARTON-MEDIUM INTERACTION MODELS

'standard'-model: medium-modified parton shower (models often based on PYSHOW)

1) hard process 2) vacuum shower 3) medium-induced radiation 4) medium evolution 5) medium correlated with jet by interaction

QCD SHOWER EVOLUTION THE PYTHIA WAY (I)

Basic idea: Evolution as an iterated series of $1 \rightarrow 2$ splittings (parent/daughters)

- splitting phase space given by virtuality, (almost) collinear splitting: \to use $t=\ln Q^2/\Lambda_{QCD}$ and z
- differential splitting probability is

$$dP_a = \sum_{b,c} \frac{\alpha_s(t)}{2\pi} P_{a \to bc}(z) dt dz$$

• splitting kernels from perturbative QCD

$$P_{q \to qg}(z) = \frac{4}{3} \frac{1+z^2}{1-z} \quad P_{g \to gg}(z) = 3 \frac{(1-z(1-z))^2}{z(1-z)} \quad P_{g \to q\overline{q}}(z) = \frac{N_F}{2} (z^2 + (1-z)^2)$$

• evolution proceeds in decreasing virtuality t and leads to a series of splittings $a \rightarrow bc$ where the daughter partons take the energies $E_b = zE_a$ and $E_c = (1-z)E_a$.

• $Q \sim P_T$ is the hard scale which makes the process perturbative for $Q^2 > 1 \text{ GeV}^2$

QCD SHOWER EVOLUTION THE PYTHIA WAY (II)

• differential branching probability at scale *t*:

$$I_{a \to bc}(t) = \int_{z_{-}(t)}^{z_{+}(t)} dz \frac{\alpha_s}{2\pi} P_{a \to bc}(z).$$

• kinematic limits z_\pm dependent on parent and daughter virtualities and masses $M_{abc}=\sqrt{m^2_{abc}+Q^2_{abc}}$

$$z_{\pm} = \frac{1}{2} \left(1 + \frac{M_b^2 - M_c^2}{M_a^2} \pm \frac{|\mathbf{p}_a|}{E_a} \sqrt{(M_a^2 - M_b^2 - M_c^2)^2 - 4M_b^2 M_c^2}}{M_a^2} \right)$$

• probability density for branching of a occuring at t_m when coming down from t_{in} :

$$\frac{dP_a}{dt_m} = \left[\sum_{b,c} I_{a\to bc}(t_m)\right] \exp\left[-\int_{t_{in}}^{t_m} dt' \sum_{b,c} I_{a\to bc}(t')\right].$$

(probability for branching, times probability that parton has not branched before)

PUTTING IT INTO THE MEDIUM

What is the microscopical model of the medium?

- A free or perturbatively tractable gas of quarks and gluons
- \rightarrow allows to treat interaction with medium in pQCD as well, i.e. 'easy' to compute
- \rightarrow in striking disagreement with fluid picture of bulk medium
- \rightarrow large (50%) energy transfer into medium by elastic reactions and recoil
- (cf. JEWEL, AMY, MARTINI, opacity expansions like GLV or WHDG, ...)
- \bullet A strongly coupled system described by the AdS/CFT duality
- \rightarrow cannot be decomposed into quasiparticles, but drag forces
- \rightarrow rather than with density T^3 , effects scale with T^4
- Static color dipole scattering centers
- \rightarrow simplifies kinematics in pQCD interactions with medium, no recoil
- \rightarrow has no elastic energy loss
- \rightarrow **no physics motivation**, just an *ad hoc* assumption
- (cf. ASW, Q-PYTHIA,...)
- No idea
- \rightarrow medium appears via transport cofficients \hat{q} and \hat{e}
- \rightarrow parametrize the non-perturbative interaction in terms of exchanged momenta (cf. YaJEM, HT, . . .)

What part of the evolution equations gets modified?

- The splitting kernels $P_{i \rightarrow jk}(z)$
- \rightarrow underlying assumption: asymptotic kinematics, no scale in the problem
- \rightarrow okay for vacuum QCD, but the medium has a scale T

 \Rightarrow leads to fractional energy loss models where radiation scales $\sim zE_{jet}$ (Q-PYTHIA, BW. . .)

- The kinematics entering the evolution equations
- ightarrow parton may pick up virtuality providing additional radiation phase space, \hat{q}
- \rightarrow parton may loose energy to medium degrees of freedom, \hat{e}
- \rightarrow both change the phase space limits branching by branching
- \Rightarrow breaks energy momentum in the shower, only recovered if medium included (YaJEM, JEWEL, . . .)
- None combine energy loss of on-shell partons with vacuum fragmentation
- \rightarrow energy loss approximation, not applicable for all observables
- \rightarrow hybrid models where part of the shower evolution before the medium is done \Rightarrow probabilistic energy shift of parton before fragmentation (MARTINI, PYQUEN, ASW, WHDG, GLV, ...)

CONSTRAINING PARTON-MEDIUM INTERACTION

Task: use the available data to find out which of these ideas are viable

Strategy:

- model combination should describe all observables for given medium \rightarrow no additional hydro ambiguity for R_{AA} and I_{AA} in 0-10% central AuAu
- find observable which is not very sensitive to choice of hydrodynamics
 → verify by using different hydro backgrounds
- \rightarrow see what scenarios can be ruled out beyond hydro uncertainty
- \bullet model combination should describe \sqrt{s} excitation
- \rightarrow but notion of 'same hydro' at RHIC and LHC is dubious
- \rightarrow allow for O(30)% background extrapolation uncertainty
- \rightarrow see what scenarios can be ruled out beyond that uncertainty
- \Rightarrow all models in the following tuned to describe R_{AA} in central AuAu at 200 AGeV

I_{AA} of hadrons

RHIC 200 AGeV central collisions, $z_T = P_T^{assoc}/P_T^{trigger}$

• basic structure — suppression at high z_T , hint of upturn at low z_T

 \rightarrow energy loss and medium-induced radiation

 \Rightarrow rules out energy loss models — energy is visibly recovered at 2-3 GeV scales

 \Rightarrow disfavours AdS/CFT strong coupling which does not predict induced radiation

T. Renk, Phys. Rev. C 84 (2011) 067902

I_{AA} of hadrons

RHIC 200 AGeV central collisions, $z_T = P_T^{assoc}/P_T^{trigger}$

- normalization is very sensitive to pathlength dependence
- \rightarrow just 20% hydro uncertainty
- \Rightarrow constrains incoherent loss into medium dof from above to 10-20%
- \Rightarrow disfavours models based on medium as quasi-free parton gas
- magnitude of the upturn is sensitive to loss into medium dof
- \Rightarrow constrains incoherent energy loss into medium from below to \sim 10%

I_{AA} IN JET-H CORRELATIONS

$$D_{AA} = \mathsf{yield}_{AA}(P_T) \langle P_T \rangle - \mathsf{yield}_{pp}(P_T) \langle P_T \rangle$$

(this is also a conditional probability, and trigger biased)

I_{AA} in jet-h correlations

• high statistics differential long. and transverse picture of away side jet

- suppression turns into enhancement of balance function at around 3 GeV
- \rightarrow this happens independent of trigger energy (!)
- \rightarrow transverse correlation width changes at the same scale
- \Rightarrow rules out fractional energy loss models
- differential picture of induced radiation spectrum, perturbatively predictable

Bigger picture:

We see this same distribution in fact over and over in different observables, just filtered through a different bias caused by the trigger condition. The message remains the same.

ADS, LIGHT AND HEAVY QUARKS

Different constraint: excitation functions in \sqrt{s}

• pQCD expects effect $\sim T^3 L^2$, strong coupling instead $\sim T^4 L^3$

• requires care to take 'same' hydro — predictive model for initial state (here EKRT)

- \Rightarrow AdS techniques do not naturally scale correctly for either light or heavy quarks \rightarrow (dispensing with realistic hydro, it is possible to make them scale for R_{AA} ...)
- \Rightarrow holography is out at best it gets a subset of observables

W. Horowitz, Nucl. Phys. A904-905 2013 (2013) 186c, T. R., Phys. Rev. C 85 (2012) 044903

SUMMARY PARTON-MEDIUM INTERACTION

- the medium modification of showers is **not**...
- \rightarrow well described by strong coupling
- \rightarrow compatible with a picture of the medium as free parton gas
- \rightarrow suitably cast into the form of a fractional energy loss
- beyond leading parton energy loss, the induced radiation pattern is. . .
- \rightarrow observed in its transverse and longitudinal structure
- \rightarrow able to constrain the energy transfer into medium dof
- \rightarrow calculable in pQCD based models

Given the constraints provided by the existing data, the properties of the aprton-medium interaction are in fact very well known. There is very little room for model assumptions left if the constraints are all taken seriously.

 \bullet currently the data can be explained by medium-modified radiation phase space \rightarrow no evidence of 'interesting' effects — color reconnection, angular decoherence. . .

Can this explain all the other data?

⇒ reasonable description of different observables (only selection shown here) → clustered observables — dijet imbalance, h-jet correlation, jet R_{AA} , jet FF → heavy quark suppression — D-meson R_{AA}

Time to think about tomography!

T. R., 1310.5458 [hep-ph]; T. R., Phys. Rev. C 86 (2012) 061901; T. R., Phys. Rev. C 83 (2011) 024908; T. R., Phys. Rev. C 85 (2012) 044903

PARTON-MEDIUM INTERACTION MODELS

III. Tomography 2.0

State of the art of medium description: EbyE hydro with initial state fluctuations **Challenge:** probe this in a differential way!

TOMOGRAPHIC INFORMATION CONTENT

Ideal tomography: if we could image the same event over and over in hadron R_{AA} :

 \rightarrow even then, not much fine structure reflected in R_{AA} $\rightarrow \langle \cdots \rangle$ involves massive averaging and **huge (!)** information loss \Rightarrow no hope for model-independent tomographic information by direct inversion

T. R., H. Holopainen, J. Auvinen and K. J. Eskola, Phys. Rev. C 85 (2012) 044915

TECHNICAL ISSUES

- event plane \neq reaction plane needs to be treated correctly
- need to use same set of binary collision vertices for hydro and jet \rightarrow correlation between jet vertices and 'hotspots'
- \bullet strong initial pressure gradients lead to initially irregular flow field \rightarrow since parton-medium interaction couples to flow, need to be considered

 \Rightarrow strong inter- and intra-event fluctuations

 \Rightarrow correlation matters in practice, flow correction does not

T. R., H. Holopainen, J. Auvinen and K. J. Eskola, Phys. Rev. C 85 (2012) 044915

Observation: Difference in-plane to out of plane is attenuation physics

- \rightarrow fluctuating mean pathlength
- \rightarrow fluctuating density
- \rightarrow fluctuating jet evolution even for fixed path
- $\rightarrow \langle \Delta E \rangle = f(\langle L \rangle)$ with f non-linear

Is this well represented by a v_2 at high P_T , i.e. is the modulation between in-plane and out of plane direction really sinusoidal?

 \Rightarrow Yes — when averaging over O(50) events, all structure except v_2 vanishes! \rightarrow this is neither trivial nor well understood

- binning with respect to the bulk v_3 event plane \rightarrow results in a jet v_3 modulation in the calculation
- high P_T partons image the initial ϵ_n by attenuation
- \rightarrow complementary to bulk imaging by pressure gradients

• current status: tension between hard and e.m. probes and bulk physics \rightarrow jet and photon v_2 are larger than models with moden EbyE hydro predict

 \Rightarrow is it possible that modern hydro models have too small initial eccentricity?

BEYOND ECCENTRICITIES

Observation: The geometry probed by a triggered correlation observable depends crucially on the trigger definition

 \rightarrow STAR jet (PID and 2 GeV P_T cut), back-to-back hadron pair , CMS flow jets

 \Rightarrow allows to selectively probe center vs. periphery of the medium \rightarrow can even be combined with v_n event plane dependence

• such plots have been around for years, huge difference between models

 \rightarrow but with the huge set of constraining data, we can now trust well-tested models

Strategy: Distinction between key and tomographic observables

- key observables: little sensitivity to choice of hydro background \rightarrow use to benchmark, constrain and validate models
- tomographic observables: large sensitivity to choice of hydro background
- \rightarrow use to test hydro evolution scenarios as imaged by jets
- \rightarrow measure with biases designed to probe certain physics
- \rightarrow this yields **constraints for hydro**, not for parton-medium interaction

This strategy is viable now, because unlike a few years ago we now have enough precise data sets to really constrain models. Thus, the ambiguity in selecting parton-medium interaction models is largely gone if enough data is used. We also have systematic knowledge what observables are sensitive to the background and what observables are not.

• at LHC, things work less well

Observation: Having a harder primary parton spectrum unbiases geometry. The environment to do detailed tomography at RHIC is *much* better than at LHC (and would even be improved by lowering beam energy to 130 GeV or so).

T. R., Phys. Rev. C 88 (2013) 054902

Main ideas of this presentation:

- there is **no substantial uncertainty** with regard to jet-medium interaction physics \rightarrow there are however many incompletely tested models
- distinction between **key observables** and **tomographic observables**
- \rightarrow little vs. high sensitivity to the assumed geometry
- shift in the view of biases
- \rightarrow the goal should not be to avoid them but to design them properly
- shift in the view of the role of harder primary parton spectrum
- \rightarrow often (statistics!) an advantage, sometimes (tomography) clearly not
- \rightarrow RHIC: tomography machine, LHC: key observable machine