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The glass “transition”

• Many materials become
glasses (not crystals) at low
temperature.
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• In practice, glass formation is a gradual process.

• What is the underlying “ideal” glass state?

• Existence of many metastable states: glasses are many-body “complex”
systems, due to disorder and geometric frustration.
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Temperature crossovers

• Glass formation characterized by several “accepted” crossovers. Onset,
mode-coupling & glass temperatures: directly studied at equilibrium.
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[G. Tarjus] [Debenedetti & Stillinger]

• Extrapolated temperatures for dynamic and thermodynamic singularities:
T0, TK . Ideal glass transition at the Kauzmann temperature is highly
controversial (cf New York Times article in July 2008).
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Molecular dynamics simulations

• Pair potential V (r < σ) = ǫ(1− r/σ)2: soft harmonic repulsion, behaves
as hard spheres in limit ǫ/T → ∞.

• Constant density, decrease temperature. Dynamics slows down →
computer glass transition. Tonset ≈ 10, Tmct ≈ 5.2. [Berthier & Witten ’09]
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• Fs(q, t) =
1

N
〈

N∑
j=1

exp[iq · (rj(t)− rj(0))]〉
title – p.4



Dynamic heterogeneity

• When density is large, particles must move in a correlated way. New
transport mechanisms revealed over the last decade: fluctuations matter.
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• Spatial fluctuations grow (modestly)
near Tg.

• Clear indication that some kind of
phase transition is not far – which?

• Structural origin not established:
point-to-set lengthscales, other struc-
tural indicators?
[Talks by Tanaka, Gradenigo...]

Dynamical heterogeneities in glasses, colloids and granular materials
Eds.: Berthier, Biroli, Bouchaud, Cipelletti, van Saarloos (Oxford Univ. Press, 2011).
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near Tg.

• Clear indication that some kind of
phase transition is not far – which?
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Dynamical view: Large deviations

• Large deviations of fluctuations of
the (time integrated) local activity
mt =

∫
dx

∫ t
0
dt′m(x; t′, t′ +∆t):

P (m) = 〈δ(m−mt)〉 ∼ e−tNψ(m).

• Exponential tail: direct signature of
phase coexistence in (d + 1) dimen-
sions: High and low activity phases. 0.0 0.1 0.2 0.3
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[Jack et al., JCP ’06]

• Equivalently, a field coupled to local dynamics induces a nonequilibrium
first-order phase transition in the “s-ensemble”. [Garrahan et al., PRL ’07]

• Metastability controls this physics. Complex (RFOT) energy landscape
gives rise to same transition, but the transition exists without multiplicity of
glassy states [cf Kurchan’s talk.] [Jack & Garrahan, PRE ’10]
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Thermodynamic view: RFOT

• Random First Order Transition (RFOT) theory is a theoretical framework
constructed over the last 30 years (Parisi, Wolynes, Götze...) using a large
set of analytical techniques.
[Structural glasses and supercooled liquids, Wolynes & Lubchenko, ’12]

• Some results become exact for simple “mean-field” models, such as the

fully connected p-spin glass model: H = −
∑
i1···ip

Ji1···ipsi1 · · · sip .

• Complex free energy landscape → sharp transitions: Onset (apparition
of metastable states), mode-coupling singularity (metastable states
dominate), and entropy crisis (metastable states become sub-extensive).

• Ideal glass = zero configurational entropy, replica symmetry breaking.

• Extension to finite dimensions (‘mosaic picture’) remains ambiguous.
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A ‘Landau free energy’

• Complex free energy landscape → effective potential V (Q). Free energy
cost (configurational entropy) to have 2 configurations at fixed distance Q:

[Franz & Parisi, PRL ’97]

Vq(Q) = −(T/N)

∫
dr2e

−βH(r2) log

∫
dr1e

−βH(r1)δ(Q−Q12)

where: Q12 = 1
N

∑N

i,j=1 θ(a− |r1,i − r2,j |). Quenched vs. annealed approx.
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• V (Q) is a ‘large deviation’ func-
tion (in d dimensions), mainly
studied in mean-field RFOT limit.

• P (Q) = 〈δ(Q−Qαβ)〉

∼ exp[−βNV (Q)]

• Overlap fluctuations reveal evolution of multiple metastable states. Finite
d requires ‘mosaic state’ because V (Q) must be convex: exponential tail.
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Direct measurement?

• Principle: Take two equilibrated configurations 1 and 2, measure their
overlap Q12, record the histogram of Q12.

• Problem: Two equilibrium configurations are typically uncorrelated, with
mutual overlap ≪ 1 and small (nearly Gaussian) fluctuations.
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[see also Cammarota et al., PRL ’11]

• Solution: Seek large deviations using umbrella sampling techniques.
[Berthier, arxiv.1306.0425]
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Overlap fluctuations: Results

• Idea: bias the dynamics
using Wi(Q) = ki(Q − Qi)

2

to explore of Q ≈ Qi.

• Reconstruct P (Q) using
reweighting techniques.

• Exponential tail below
Tonset: phase coexis-
tence between multiple
metastable states in bulk
liquid.

• Static fluctuations control
non-trivial fluctuations in tra-
jectory space, and phase
transitions in s-ensemble.
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Equilibrium phase transitions

• Non-convex V (Q) implies that an equilibrium phase transition can be
induced by a field conjugated to Q. [Kurchan, Franz, Mézard, Cammarota, Biroli...]

• Annealed: 2 coupled copies.

εa

H = H1 +H2 − ǫaQ12

• Quenched: copy 2 is frozen.

εq

H = H1 − ǫqQ12
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• Within RFOT: Some differences be-
tween quenched and annealed cases.

• First order transition emerges from TK ,
ending at a critical point near Tonset.

• Direct consequence of, but different
nature from, ideal glass transition.
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Numerical evidence in 3d liquid

• Investigate (T, ǫ) phase dia-
gram using umbrella sampling.

• Sharp jump of the overlap be-
low Tonset ≈ 10.

• Suggests coexistence region
ending at a critical point.
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• P (Q) bimodal for finite N .

• Bimodality and static suscep-
tibility enhanced at larger N for
T . Tc ≈ 9.8.

→ Equilibrium first-order phase
transition.
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Ideal glass transition?

• ǫ perturbs the Hamiltonian: Affects the competition energy /
configurational entropy (possibly) controlling the ideal glass transition.

• Random pinning of a fraction c of par-
ticles: unperturbed Hamiltonian.

• Dynamical slowing down observed nu-
merically. [Kim, Scheidler, Kuni...]
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Pinning

• Within RFOT, ideal glass transition line ex-
tends up to critical point.

[Cammarota & Biroli, PNAS ’12]

• Pinning reduces multiplicity of states, i.e. de-
creases configurational entropy: Sconf(c, T ) ≃

Sconf(0, T )− cY (T ). Equivalent of T → TK .
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Random pinning: Simulations

• Challenge: fully exploring equilibrium configuration space in the
presence of random pinning: parallel tempering. Limited (for now) to small
system sizes: N = 64, 128. [Kob & Berthier, PRL ’13]

Low-c fluid High-c glass

• From liquid to equilibrium glass: freezing of amorphous density profile.

• We perform a detailed investigation of the nature of this phase change,
in fully equilibrium conditions.
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Microscopic order parameter

• No configurational entropy, no time scale, no extrapolation, no aging.

• We detect the glass formation using an equilibrium, microscopic order
parameter: The global overlap Q = 〈Q12〉.
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• Gradual increase at high T to abrupt emergence of amorphous order at
low T at well-defined c value. Signature of first-order phase transition?
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Fluctuations: Phase coexistence

• Probability distribution function of the overlap: P (Q) = 〈δ(Q−Qαβ)〉 .

• Numerical measurements using parallel tempering simulations to explore
(c, T,N) phase diagram performing thermal and disorder averages.
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• Bimodal distributions appear at low enough T , indicative of phase
coexistence at first-order transition.
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Thermodynamic limit?

• Phase transition can only be proven using finite-size scaling techniques
to extrapolate toward N → ∞.

• Limited data support enhanced bimodality and larger susceptibility for
larger N . Encouraging, but not quite good enough: More work needed.
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Equilibrium phase diagram

• Location of the transition from liquid-to-glass determined from
equilibrium measurements of microscopic order parameter on both sides.
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• Glass formation induced by random pinning has clear thermodynamic
signatures which can be studied directly.

• Results compatible with Kauzmann transition – this can now be decided.
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Summary

• Non-trivial static fluctuations of the overlap in bulk supercooled liquids:
non-Gaussian V (Q) losing convexity below ≈ Tonset.

• Adding a thermodynamic field can induce equilibrium phase transitions.
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Critical point
• Annealed coupling: first-order transition
ending at simple critical point.

• Quenched coupling: first-order transition
ending at random critical point.

• Random pinning: random first order transi-
tion ending at random critical point.

• Direct probes of peculiar thermodynamic underpinnings of RFOT theory.

• A Kauzmann phase transition may exist, and its existence be decided.
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