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The glass “transition”

e Many materials become 10" . |
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e In practice, glass formation is a gradual process.
e What is the underlying “ideal” glass state?

e Existence of many metastable states: glasses are many-body “complex”
systems, due to disorder and geometric frustration.



Temperature crossovers

e Glass formation characterized by several “accepted” crossovers. Onset,
mode-coupling & glass temperatures: directly studied at equilibrium.
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[G. Tarjus] [Debenedetti & Stillinger]

e Extrapolated temperatures for dynamic and thermodynamic singularities:
Ty, Tk . Ideal glass transition at the Kauzmann temperature is highly
controversial (cf New York Times article in July 2008).



Molecular dynamics simulations

e Pair potential V(r < o) = ¢(1 — r/0)?: soft harmonic repulsion, behaves
as hard spheres in limit ¢/T — oo.

e Constant density, decrease temperature. Dynamics slows down —
computer glass transition. T ,s.t =~ 10, Tyt =~ 5.2. [Berthier & Witten '09]
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Dynamic heterogeneity

e When density is large, particles must move in a correlated way. New
transport mechanisms revealed over the last decade: fluctuations matter.
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e Spatial fluctuations grow (modestly)
near 7.

e Clear indication that some kind of
phase transition is not far — which?

e Structural origin not established:
point-to-set lengthscales, other struc-
tural indicators?

[Talks by Tanaka, Gradenigo...]

Dynamical heterogeneities in glasses, colloids and granular materials
Eds.: Berthier, Biroli, Bouchaud, Cipelletti, van Saarloos (Oxford Univ. Press, 2011).
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e Spatial fluctuations grow (modestly)
near 7Ty,.

e Clear Indication that some kind of
phase transition is not far — which?

e Structural origin not established:
point-to-set lengthscales and other
structural indicators disappointing.
[Talks by Tanaka, Gradenigo...]

Dynamical heterogeneities in glasses, colloids and granular materials
Eds.: Berthier, Biroli, Bouchaud, Cipelletti, van Saarloos (Oxford Univ. Press, 2011).



Dynamical view: Large deviations

e Large deviations of fluctuations of o | | ]
the (time Iintegrated) local activity 10 A7 NN
me = [da [ dt'm(z;t' ' + At): - 107 sy
P(m) = (§(m — my)) ~ e”Ne0m), T 0% L =m0
-9 : T tobs: 640
e Exponential tail: direct signature of t.=1280 |
phase coexistence in (d + 1) dimen- 00 © . . . ™
sions: High and low activity phases. 0.0 0.1 02 0.3

[Jack et al., JCP '06]

e Equivalently, a field coupled to local dynamics induces a nonequilibrium
first-order phase transition in the “s-ensemble”. [Garrahan et al., PRL '07]

e Metastability controls this physics. Complex (RFOT) energy landscape
gives rise to same transition, but the transition exists without multiplicity of
glassy states [cf Kurchan’s talk.] [Jack & Garrahan, PRE '10]



Thermodynamic view: RFOT

e Random First Order Transition (RFOT) theory is a theoretical framework
constructed over the last 30 years (Parisi, Wolynes, G0tze...) using a large
set of analytical techniques.

[Structural glasses and supercooled liquids, Wolynes & Lubchenko, '12]

e Some results become exact for simple “mean-field” models, such as the
fully connected p-spin glass model: H = — Z Jiy i) Siy " Si .
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e Complex free energy landscape — sharp transitions: Onset (apparition
of metastable states), mode-coupling singularity (metastable states
dominate), and entropy crisis (metastable states become sub-extensive).

e |deal glass = zero configurational entropy, replica symmetry breaking.

e Extension to finite dimensions (‘mosaic picture’) remains ambiguous.



A ‘Landau free energy’

e Complex free energy landscape — effective potential V' (Q)). Free energy
cost (configurational entropy) to have 2 configurations at fixed distance Q:

[Franz & Parisi, PRL '97]

Va(Q) = —(T/N) / drye PH(r2) Jog / drie PP §(Q — Q1)

where: Q12 = % 22;-:1 0(a — |r1; —ra24]). Quenched vs. annealed approx.
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e V(Q) Is a ‘large deviation’ func-
tion (in d dimensions), mainly
studied in mean-field RFOT limit.

° PQ) = (0(Q—CQap))
~ exp[-BNV(Q)]

e Overlap fluctuations reveal evolution of multiple metastable states. Finite
d requires ‘mosaic state’ because V(@) must be convex: exponential talil.



Direct measurement?

e Principle: Take two equilibrated configurations 1 and 2, measure their
overlap 12, record the histogram of )1-.

e Problem: Two equilibrium configurations are typically uncorrelated, with
mutual overlap <« 1 and small (nearly Gaussian) fluctuations.
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[see also Cammarota et al., PRL '11]

e Solution: Seek large deviations using umbrella sampling techniques.
[Berthier, arxiv.1306.0425]



Overlap fluctuations: Results

e [dea: bias the dynamics
using W;(Q) = ki(Q — Q;)”

to explore of Q = Q;.

e Reconstruct P(Q) using
reweighting techniques.

e Exponential tail below
Tonset . phase coexis-
tence between multiple
metastable states in bulk
liquid.

e Static fluctuations control
non-trivial fluctuations in tra-
jectory space, and phase
transitions in s-ensemble.
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Equilibrium phase transitions

e Non-convex V(@) implies that an equilibrium phase transition can be
Induced by a field conjugated to ().  [Kurchan, Franz, Mézard, Cammarota, Biroli...]

e Annealed: 2 coupled copies.
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e Within RFOT: Some differences be-
tween quenched and annealed cases.

e First order transition emerges from T,
ending at a critical point near T}, sct -

e Direct consequence of, but different
nature from, ideal glass transition.



Numerical evidence In  3d liquid

e Investigate (7,¢) phase dia-
gram using umbrella sampling.

e Sharp jump of the overlap be-
low Tonset ~ 10.

e Suggests coexistence region
ending at a critical point.
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(b)
T =8, N =108

e P(Q) bimodal for finite V.

e Bimodality and static suscep-
tibility enhanced at larger N for
T <T.~9.S8.

— Equilibrium first-order phase
transition.



ldeal glass transition?

e ¢ perturbs the Hamiltonian: Affects the competition energy /
configurational entropy (possibly) controlling the ideal glass transition.

e Random pinning of a fraction ¢ of par- C%DOQ QQ
ticles: unperturbed Hamiltonian.
H OOV

 Dynamical slowing down observed nu- O QO O
merically.  [Kim, Scheidler, Kuni...] Q QQ O
0000
At

e Within RFOT, ideal glass transition line ex-
tends up to critical point.
[Cammarota & Biroli, PNAS '12]

e Pinning reduces multiplicity of states, i.e. de-
creases configurational entropy: Scont(c, T') =~

Pinni ng» Seont(0,T) — cY (T). Equivalent of T — Tk-.




Random pinning: Simulations

e Challenge: fully exploring equilibrium configuration space in the
presence of random pinning: parallel tempering. Limited (for now) to small
system sizes: N = 64, 128. [Kob & Berthier, PRL '13]

Low-c fluid

High-c glass

e From liquid to equilibrium glass: freezing of amorphous density profile.

e We perform a detailed investigation of the nature of this phase change,
In fully equilibrium conditions.



Microscopic order parameter

e No configurational entropy, no time scale, no extrapolation, no aging.

e We detect the glass formation using an equilibrium, microscopic order

parameter: The global overlap @ = (Q12).
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N =64

e Gradual increase at high T' to abrupt emergence of amorphous order at
low T at well-defined ¢ value. Signature of first-order phase transition?



Fluctuations: Phase coexistence

e Probability distribution function of the overlap: P(Q)

<5(Q - Qa5)> '

e Numerical measurements using parallel tempering simulations to explore
(¢, T, N) phase diagram performing thermal and disorder averages.
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e Bimodal distributions appear at low enough T, indicative of phase

coexistence at first-order transition.



Thermodynamic limit?

e Phase transition can only be proven using finite-size scaling techniques
to extrapolate toward N — ~c.
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e Limited data support enhanced bimodality and larger susceptibility for
larger N. Encouraging, but not quite good enough: More work needed.



Equilibrium phase diagram

e Location of the transition from liquid-to-glass determined from
equilibrium measurements of microscopic order parameter on both sides.
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e Glass formation induced by random pinning has clear thermodynamic
signatures which can be studied directly.

e Results compatible with Kauzmann transition — this can now be decided.



Summary

e Non-trivial static fluctuations of the overlap in bulk supercooled liquids:
non-Gaussian V' (Q) losing convexity below ~ T ,cet.

e Adding a thermodynamic field can induce equilibrium phase transitions.

AT e Annealed coupling: first-order transition
ending at simple critical point.

e Quenched coupling: first-order transition
ending at random critical point.

e Random pinning: random first order transi-
8» tion ending at random critical point.

e Direct probes of peculiar thermodynamic underpinnings of RFOT theory.

e A Kauzmann phase transition may exist, and its existence be decided.
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