Vibrations in jammed solids: Beyond linear response

Thibault Bertrand1
Carl F. Schreck1
Corey S. O’Hern1
Mark D. Shattuck1,2

1 Yale University
2 City College of the City University of New York
Nonlinear Effects in Granular Solids

Nonlinear vibrational properties of granular solids – Vibration dampening, solitary modes, dispersion, deviations from elasticity theory

Non-linear effects in real granular packings:

- Breaking existing and forming new contacts
- Non-linear interactions (Hertzian)
- Sliding and rolling friction
- Energy dissipation

See Carl Schreck’s poster for details on Hertzian interactions

Isolate the effects of fluctuations in the network of contacts!
Absence of Linear Response

Dynamical Matrix:

\[V(r_{ij}) = \frac{\epsilon}{2} \left(1 - \frac{r_{ij}}{\sigma_{ij}} \right)^2 \Theta \left(1 - \frac{r_{ij}}{\sigma_{ij}} \right) \]

\[M_{\alpha,\beta} = \left(\frac{\partial^2 V}{\partial r_{\alpha} \partial r_{\beta}} \right)_{\vec{r} = \vec{r}_0} \]

Diagonalize the dynamical matrix to access eigenfrequencies:

\[\hat{e}_i, i \in \{1, \ldots, 2N\} \]

\[\lambda_i = m\omega_i^2 \]
Absence of Linear Response

Temperature allow particle to explore its surrounding on a distance δ:

$$\frac{1}{2}k\delta^2 = T \quad \delta = \sqrt{\frac{2T}{k}}$$

Apparent diameter of a particle: $\sigma^{\text{eff}} = \sigma - \delta$

$$\phi^{\text{eff}} = \phi \left(1 - \frac{\delta}{\sigma}\right)^2$$

Need to increase the volume fraction to rejam the system at a given T:

$$\phi = \frac{\phi_J}{\left(1 - \sqrt{\frac{2T}{k\sigma^2}}\right)^2}$$
Absence of Linear Response

$\phi = \frac{\phi_J}{\left(1 - \sqrt{\frac{2T}{k\sigma^2}}\right)^2}$
Generating Jammed Packings

Mechanically stable packing

\[\Delta \phi > 0 \]

Local minima

\[\Delta \phi = 0 \]

\[\Delta \phi < 0 \]

degenerate minima

\[V(\vec{r}) \]

\[r \leftrightarrow \] grow

\[r \rightarrow \] shrink

\[\sigma \]

\[1.4\sigma \]
Beyond the Harmonic Approximation…

- Molecular Dynamics Simulation
- Constant energy
- Linear Spring Repulsion
- Frictionless
- No dissipation
- At $t=0$, add temperature

\[N = 20 \]
Non-harmonicity in Disordered Solids

Protocol:
- Perturb along eigenmode by δ
- Let the system evolve at constant energy
- Study the FT of the particle motion

$N = 12$
$\Delta \phi = 10^{-5}$
mode = 6

First contact breaks!

Beyond the Harmonic Approximation…

Under *harmonic approximation*:

\[M = k_B T C^{-1} \]

\[V = \frac{1}{N} \langle \nu \nu^T \rangle \]

\[V = k_B T I \]

Solution 1: probing the correlation of particles displacements via

\[M = VC^{-1} \]

Solution 2: looking for vibrational frequencies emerging in the Fourier Transform of the velocity autocorrelation function via

\[d(t) = \sum_{i=1}^{N} \frac{\langle \mathbf{v}_i(t) \cdot \mathbf{v}_i(0) \rangle_0}{\sum_{i=1}^{N} \langle \mathbf{v}_i(0) \cdot \mathbf{v}_i(0) \rangle_0} \]

\[\tilde{d}(\omega) = \mathcal{F}[d(t)] \]
Assessing the Vibrational Frequencies

(a) $D(\omega)$ vs ω

(b) $D(\omega)$ vs ω

- $D(\omega)$: Distribution function of vibrational frequencies
- ω: Angular frequency
- ϕ: Phase
- ϕ_j: Phase at temperature T
- Disordered Solid: Phase transition region

$logT$ vs ϕ_j
Assessing the Vibrational Frequencies

Non trivial evolution of the covariance matrix prediction and Fourier transform of Velocity autocorrelation function w/ T
Temperature Dependence of the Frequencies

\[\phi \]

Disordered Solid

\[\phi_j \]

\[\omega_k(T) = \omega_k^d + \frac{\omega_k^* - \omega_k^d}{\left(1 + l_c(\Delta\phi)/\sqrt{T}\right)\nu} \]
Temperature Dependence of the Frequencies

\(\phi \)

Disordered Solid

\(\phi_j \)

\(\log T \)

\(\omega_m \)

\(T_0 \)
Testing Resonance in the Modes

- Drive one particle
- Record average kinetic energy per particle in steady state

\[\langle K_{pp} \rangle \]

\[\log_{10}(\delta \omega)^2 \]

\[N = 10 \]

\[\Delta \phi = 10^{-8} \]
Rearrangement probability

100 snapshot over the course of the simulation
Introducing a new Phase Diagram

ICS = Iso-coordinated Solid
HCS = Hypo-coordinated Solid
HPL = Hard Particle Liquid
DL = Dense Liquid

\[z_{\text{iso}} = dN - d + 1 \]
Density of States

![Graphs showing density of states for ICS, HPL, and HCS](image)
Conclusions & Future directions

- No linear response for a wide range of parameters
- Need of a new description for the vibrational dynamics of jammed packings
- Transition from resonant to non-resonant modes
- Investigating effect of friction, particle shape and order

Acknowledgements

Grants:
DTRA Grant No. 1-10-1-0021
NSF MRSEC DMR-1119826

Thank you!

• Corey O’Hern
• Mark Shattuck
• Carl Schreck
• The O’Hern Group
• Yale High Performance Computing