Spin ice dynamics : generic vertex models

Leticia F. Cugliandolo

Université Pierre et Marie Curie (UPMC) – Paris VI

leticia@lpthe.jussieu.fr

www.lpthe.jussieu.fr/~leticia/seminars

In collaboration with

<u>Demian Levis</u> (PhD at LPTHE \rightarrow post-doc at Montpellier)

<u>Laura Foini</u> (Post-doc at LPTHE \rightarrow Genève)

Marco Tarzia (Faculty at LPTMC)

EPL 97, 30002 (2012) ; J. Stat. Mech. P02026 (2013) PRL 110, 207206 (2013) & PRB 87, 214302 (2013)

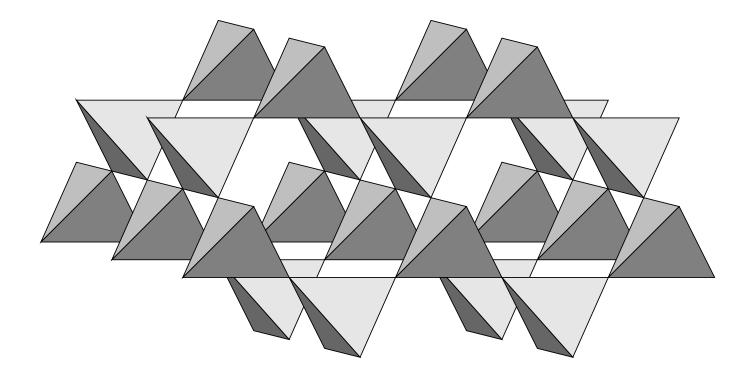
Kyoto, Japan, July 2013

Plan & summary

- Brief introduction to classical frustrated magnetism.
 - 2d spin-ice samples and the 16 vertex model.
 - Exact results for the **statics** of the 6 and 8 vertex models with integrable systems methods. Very little is known for the **dynamics**.
- Our work :
 - Phase diagram of the generic model. Monte Carlo and Bethe-Peierls.
 Stochastic dissipative dynamics after quenches into the D, AF and FM phases. Metastability & growth of order in the AF and FM phases
 Monte Carlo simulations & dynamic scaling.
 - Explanation of measurements in **as-grown artificial spin ice**.

Natural spin-ice

3d : the pyrochlore lattice $% d^{2}d^{2}$

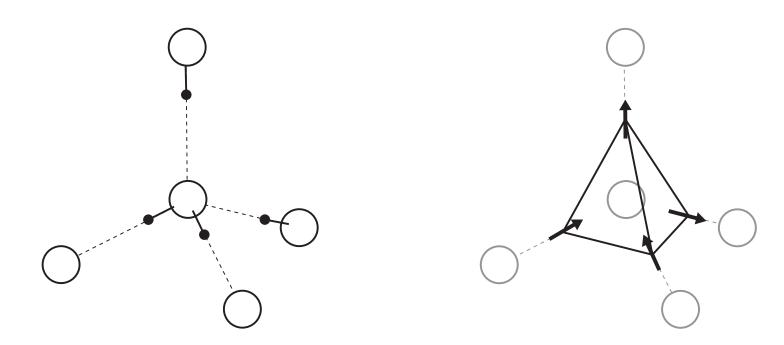


Coordination four lattice of corner linked tetahedra. The rare earth ions occupy the vertices of the tetrahedra; **e.g.** $Dy_2 Ti_2 O_7$

Harris, Bramwell, McMorrow, Zeiske & Godfrey 97

Single unit

Water-ice and spin-ice

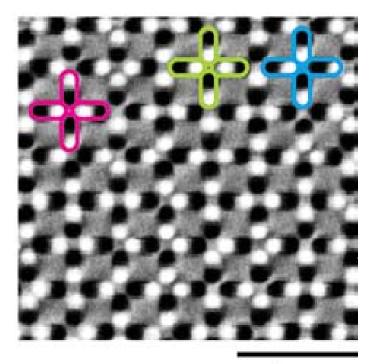


Water-ice : coordination four lattice. Bernal & Fowler rules, two H near and two far away from each O.

Spin-ice : four (Ising) spins on each tetrahedron forced to point along the axes that join the centers of two neighboring units (Ising anisotropy). Interactions imply the two-in two-out ice rule.

Artificial spin-ice

Bidimensional square lattice of elongated magnets



1 µm

AF

Bidimensional square lattice Dipoles on the edges Long-range interactions 16 possible vertices Experimental conditions in this fig. : vertices w/ two-in & two-out arrows with staggered AF order are much more numerous

3in-1out

FM

Wang et al 06, Nisoli et al 10, Morgan et al 12

Square lattice artificial spin-ice

Local energy approximation $\Rightarrow 2d$ 16 vertex model

Just the interactions between dipoles attached to a vertex are added.

Dipole-dipole interactions. Dipoles are modeled as two opposite charges. Each vertex is made of 8 charges, 4 close to the center, 2 away from it. The energy of a vertex is the electrostatic energy of the eight charge configuration. With a convenient normalization, dependence on the lattice spacing ℓ :

 $\epsilon_{AF} = \epsilon_5 = \epsilon_6 = (-2\sqrt{2}+1)/\ell \qquad \epsilon_{FM} = \epsilon_1 = \dots = \epsilon_4 = -1/\ell$ $\epsilon_e = \epsilon_9 = \dots \epsilon_{16} = 0 \qquad \epsilon_d = \epsilon_7 = \epsilon_8 = (4\sqrt{2}+2)/\ell$

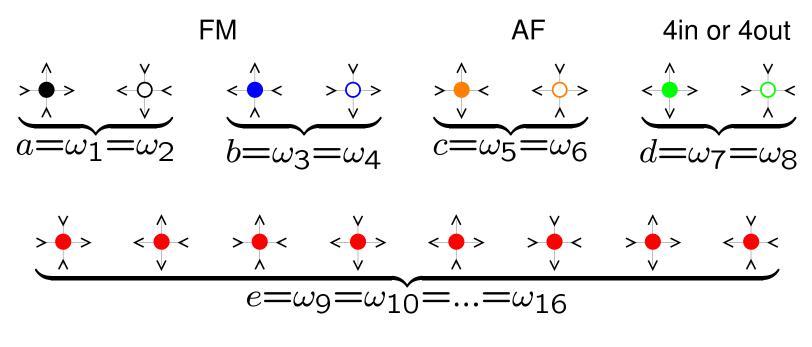
 $\epsilon_{AF} < \epsilon_{FM} < \epsilon_e < \epsilon_d$

Nisoli et al 10

Energy could be tuned differently by adding fields, vertical off-sets, etc.

The 2d 16 vertex model

with 3-in 1-out vertices : non-integrable system



3in-1out or 3out-1in

(Un-normalized) statistical weight of a vertex $\omega_k = e^{-\beta \epsilon_k}$.

In the model a, b, c, d, e are free parameters (usually, c is the scale).

In the experiments ϵ_k are fixed and β is the control parameter.

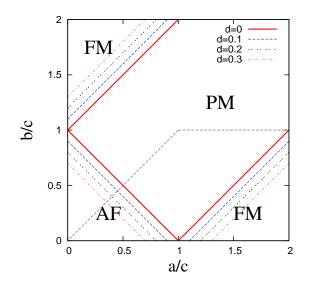
The vertex energies ϵ_k are estimated as explained above.

Static properties

What did we know?

• 6 and 8 vertex models.

Integrable systems techniques (transfer matrix + Bethe Ansatz), mappings to many physical (e.g. quantum spin chains) and mathematical problems.



Phase diagram critical exponents ground state entropy boundary conditions etc.

Lieb 67; Baxter Exactly solved models in statistical mechanics 82

• 16 vertex model.

Integrability is lost. Not much interest so far.

Static properties

What did we do?

• Equilibrium simulations with finite-size scaling analysis.

Continuous time Monte Carlo.

e.g. focus on the **AF-PM transition**; cfr. experimental data.

AF order parameter :

$$M_{-} = \frac{1}{2} \left(\langle |m_{-}^{x}| \rangle + \langle |m_{-}^{y}| \rangle \right)$$

with $m_{-}^{x,y}$ the staggered magnetization along the x and y axes.

Finite-time relaxation

 $M_{-}(t) \simeq t^{-\beta/(\nu z_c)}$

• Cavity Bethe-Peierls mean-field approximation.

The model is defined on a tree of single vertices or 4-site plaquettes

Equilibrium CTMC

Magnetization across the PM-AF transition

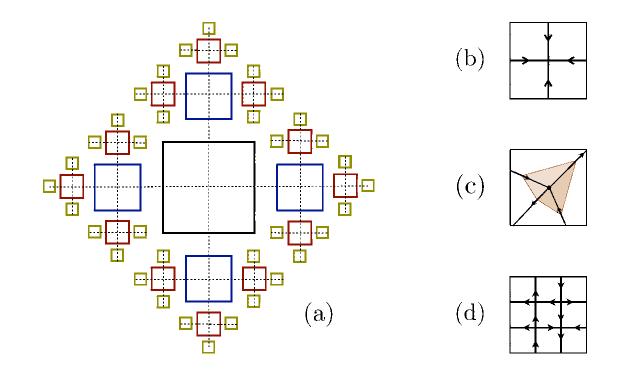
Vertex energies set to the values explained above.



Solid red line from the Bethe-Peierls calculation.

Equilibrium analytic

Bethe-Peierls or cavity method



Join an L-rooted tree from the left; an U-rooted tree from above;

an R-rooted tree from the right and a D-rooted tree from below.

Foini, Levis, Tarzia & LFC 12

is it a powerful technique?

in, e.g., the 6 vertex model

With a tree in which the unit is a vertex we find the PM, FM, and AF phases.

 $s_{PM} = \ln[(a+b+c)/(2c)]$

Pauling's entropy $s_{PM} = \ln 3/2 \sim 0.405$ at the spin-ice point a = b = c.

Location and 1st order transition between the PM and FM phases.

Location V but 1st order PM-AF transition. X

no fluctuations in the frozen FM phase.

no fluctuations in the AF phase.

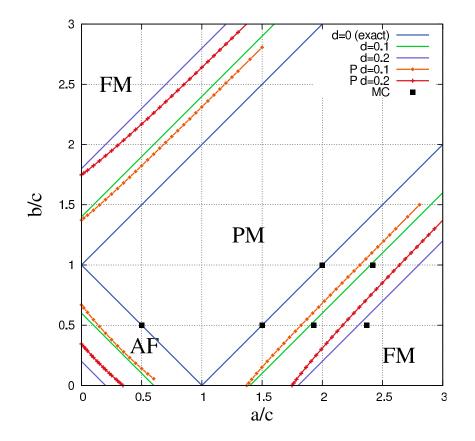
With a four site plaquette as a unit we find the PM, FM, and AF phases.

A more complicated expression for $s_{PM}(a, b, c)$ that yields $s_{PM} \simeq 0.418$ closer to Lieb's entropy $s_{PM} \simeq 0.431$ at the spin-ice point. Location and 1st order transition between the PM and FM phases. \checkmark Location \checkmark but *2nd order* (should be BKT) PM-AF transition. \thickapprox fluctuations in the AF phase and frozen FM phase. \checkmark

Static properties

Equilibrium phase diagram 16 vertex model

• MC simulations & cavity Bethe-Peierls method

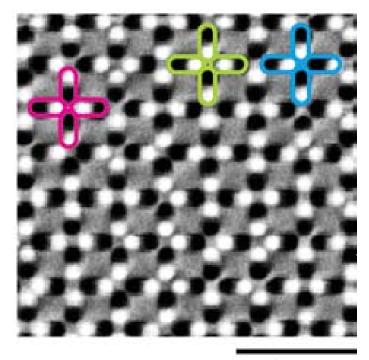


Phase diagram critical exponents ground state entropy equilibrium fluctuations etc.

Foini, Levis, Tarzia & LFC 12

Artificial spin-ice

Bidimensional square lattice of elongated magnets



1 µm

AF

Bidimensional square lattice Magnetic material poured on edges Magnets flip while they are small & freeze when they reach some size *(analogy w/granular matter)* Magnetic force microscopy Images : vertex configurations

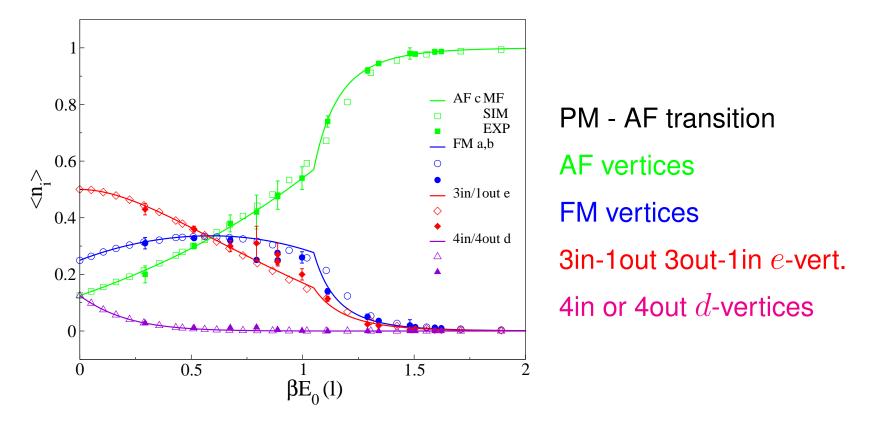
3in-1out

FM

Morgan et al 12 (UK collaboration)

Vertex density

Across the PM-AF transition – numerical, analytic and exp. data

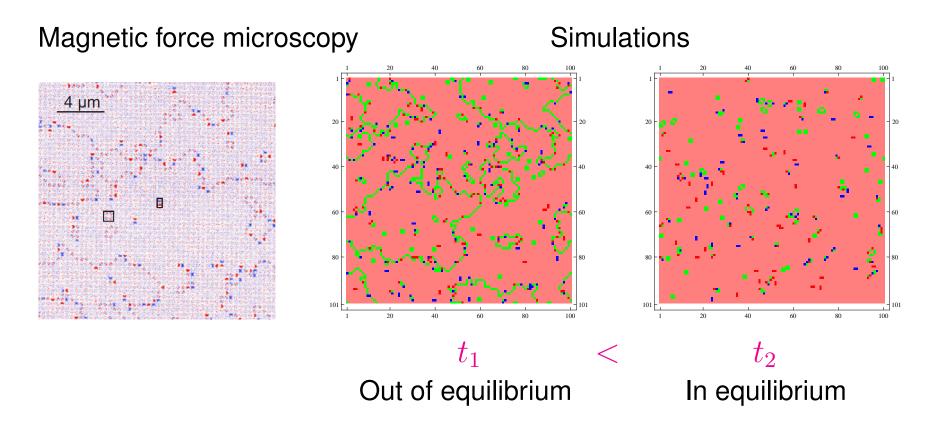


Each set of vertical points, $\beta E_0(\ell)$ value, corresponds to a different sample (varying lattice spacing ℓ or the compound). $1/\beta$ is the working temperature.

Levis, LFC, Foini & Tarzia 13 ; Experimental data courtesy of Morgan et al. 12

Artificial spin-ice

As-grown samples : in equilibrium at β or not ?



A statistical and geometric analysis of domain walls should be done to conclude, especially for samples close to the transition.

Research project with F. Romà

Quench dynamics

Setting

• Take an initial condition in equilibrium at a_0, b_0, c_0, d_0, e_0 .

We used $a_0 = b_0 = c_0 = d_0 = e_0 = 1$ that corresponds to $T_0 \to \infty$

- We evolve it with a set of parameters a, b, c, d, e in the phases PM, FM, AF : an infinitely rapid quench at t = 0.
- We use stochastic dynamics.

We update the vertices with the usual heat-bath rule,

we implement a **continuous time MC algorithm** to reach long time scales.

Relevant dynamics experimentally (contrary to loop updates used to study equilibrium in the 8 vertex model)

Levis & LFC 11, 13

Dynamics in the PM phase

MeDensity of defects, $n_d = \# defects / \# vertices$



Relevant experimental sizes L = 50

= 50

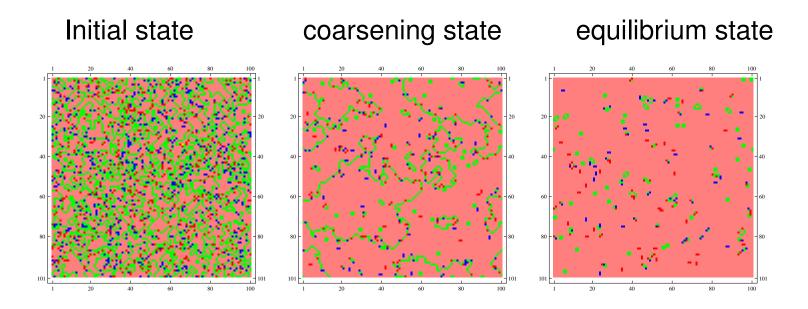
L = 100

 $a = b = c, d/c = e/c = 10^{-1}, 10^{-2}, \dots, 10^{-8}$ from left to right. For $e = d \approx 10^{-4}c$ the density of defects reaches its equilibrium value. For $e = d \approx 10^{-4}c$ the density of defects gets blocked at $n_d \approx 10/L^2$. It eventually approaches the final value $n_d \approx 2/L^2$ indep. of bc; rough estimate for t_{eq} from reaction-diffusion arguments.

Dynamics in the AF phase

Snapshots

Color code. Orange background : AF order of two kinds ; green FM vertices, red-blue defects.



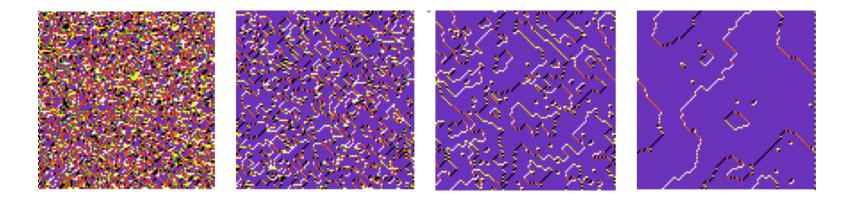
Isotropic growth of AF order for this choice of parameters

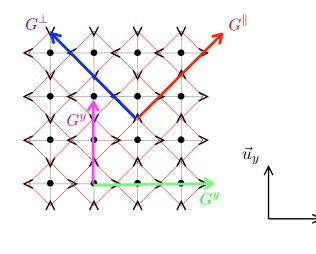
$$c \gg a = b$$

AF vertices are energetically preferred; there is no imposed anisotropy.

Dynamics in the AF phase

Snapshots, correlation functions & growing length





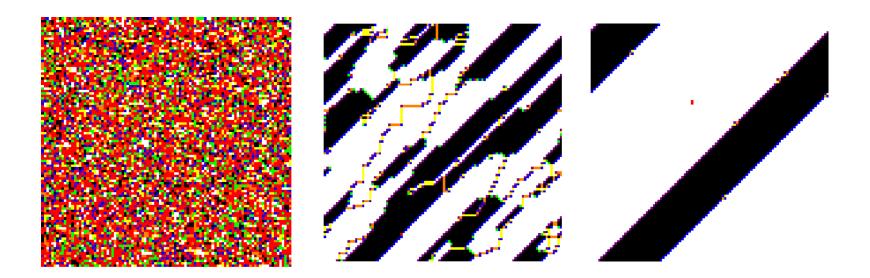
Scaling of correlation functions along the \parallel and \perp directions

$$L(t) \simeq t^{1/2}$$

 \vec{u}_r

Dynamics in the FM phase

Snapshots

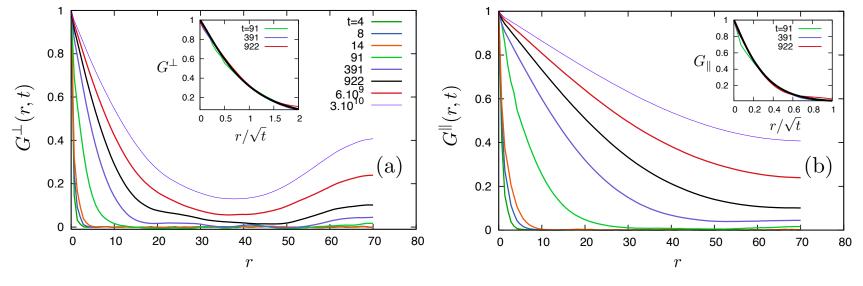


Growth of stripes

Quench to a large *a* value : black & white vertices energetically favored.

Dynamics in the FM phase

Dynamic scaling and growing lengths



 $G^{\perp}(r,t), \ G^{\parallel}(r,t) \simeq F_{\parallel,\perp}(r/L(t))$

Stretched exponential $F(x) = e^{-(x/w)^v}$ with $v_{\parallel} \simeq v_{\perp} \simeq 0.15$ and $\neq w_{\parallel,\perp}$

the same growing length

$$L_{\parallel}(t), \ L_{\perp}(t) \simeq t^{1/2}$$

until a band crosses the sample, then a different mechanism.

Summary

Classical frustrated magnetism ; spin-ice in two dimensions.

- The 2d 16 vertex model : a problem with analytic, numeric and experimental interest.
 Cfr. artificial spin-ice
- Beyond integrable systems' methods to describe the static properties.
 Some results of the Bethe-Peierls approximation are exact, others are at least extremely accurate.
 Analytic challenge
- Slow coarsening (or near critical in PM) dynamics.

Stripes of growing ferromagnetic order in the FM phase, isotropic AF growth for a = b, with the same growing length and scaling functions but different parameters;

$$L_{\parallel}^{\rm FM}(t) \simeq L_{\perp}^{\rm FM}(t) \simeq L^{\rm AF}(t) \simeq t^{1/2}$$

Analytically?

Dynamics blocked in striped states later.

Equilibrium : the tree vs 2d

16 vertex model

- The cavity method can deal with the generic vertex model.
 More complicated recursion relations, more cases to be considered, but no further difficulties.
- The transition lines do not get parallelly translated with respect to the ones of the 6-vertex model. ?

They are all of 2nd order. 🖌

They are remarkably close to the numerical values in 2d. \checkmark

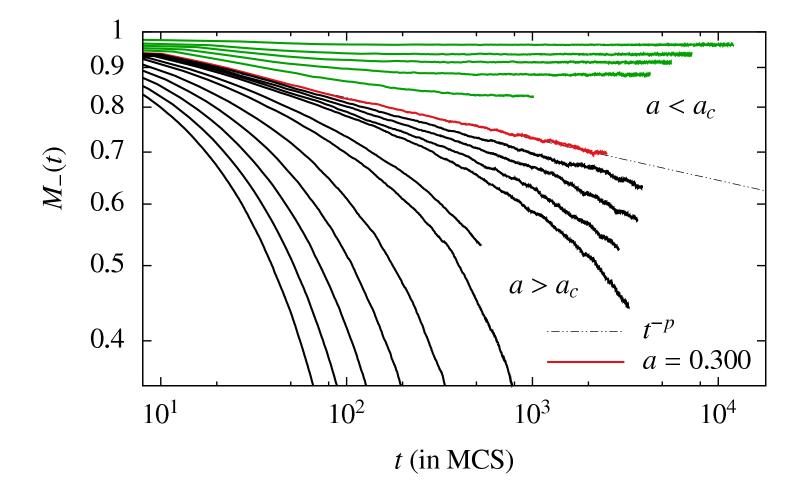
The exponents : on the tree they are mean-field, in 2d ? In progress.

- MF expression for Δ_{16} In 2d ?
- The quantum Ising chain for the 16 vertex model should include new terms. In progress.

Foini, Levis, Tarzia & LFC 12

Finite time relaxation

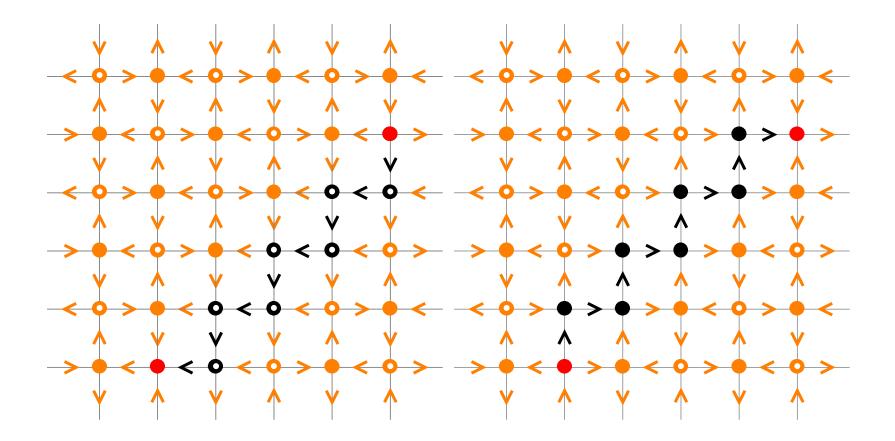
Magnetization across the PM-AF transition



 $a_c = e^{-\beta_c e_1} \simeq 0.3$ with $e_1 = 0.45 \implies \beta_c = 2.67 \pm 0.02$

Fluctuations

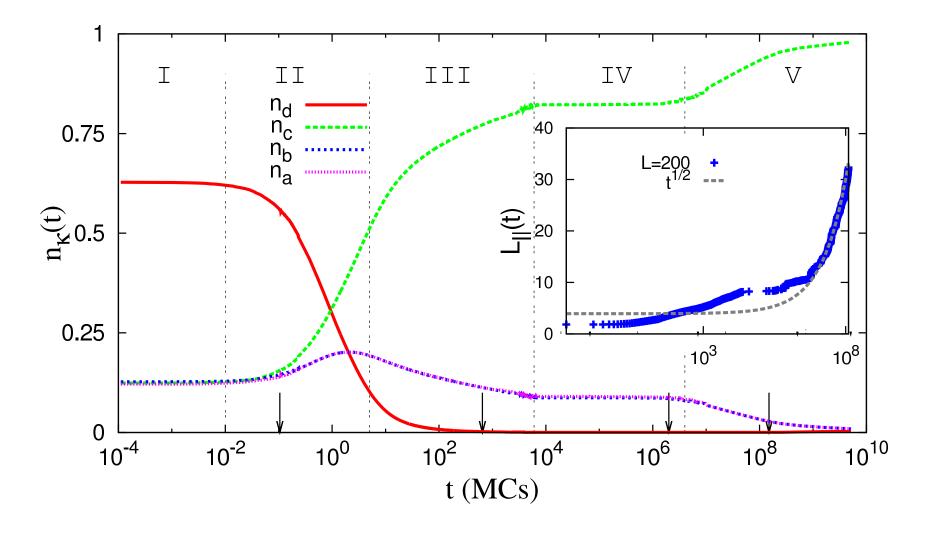
Sketch



The probability of such fluctuations can be estimated with the Bethe-Peierls calculation on a tree of four-site plaquettes !

Dynamics in the AF phase

Density of defects & growing length (d = e here)

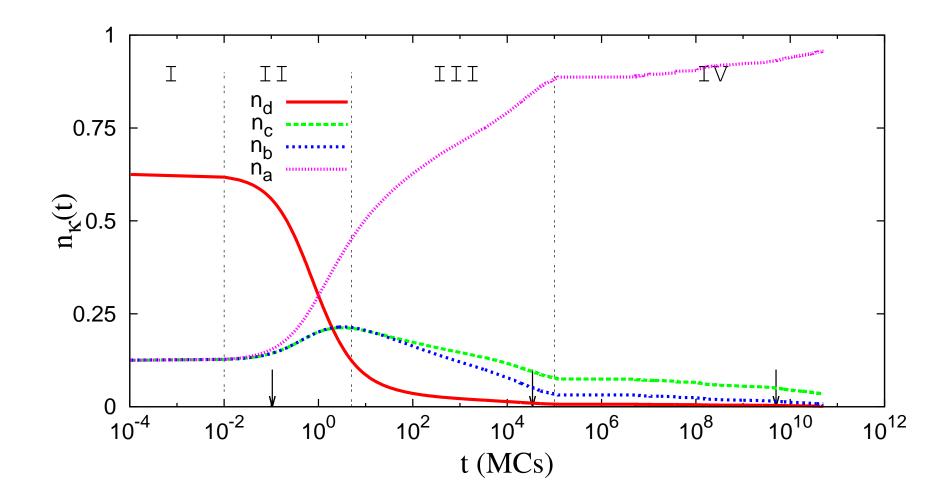


Isotropic growth of AF order with

$$L(t) \simeq t^{1/2}$$

Dynamics in the FM phase

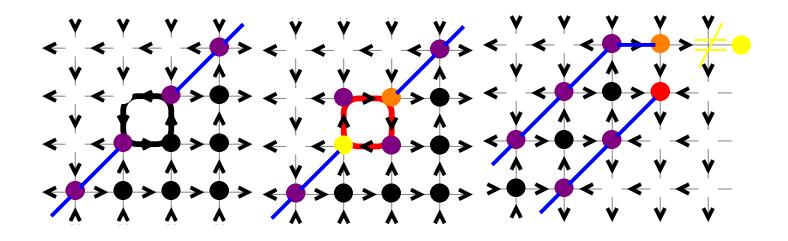
Density of defects (d = e here)



Four regimes

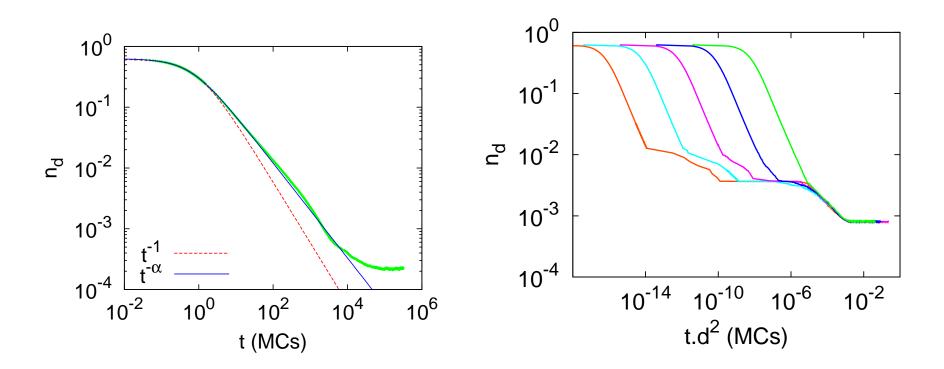
Dynamics in the FM phase

Some elementary moves



Dynamics in the D phase

Density of defects



Short-time decay $t^{-0.78}$ Different from MF approximation to reaction - diffusion model t^{-1} .

 $n_d \simeq f(td^2)$

Scaling below the plateau.