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Plan & summary

• Brief introduction to classical frustrated magnetism.

2d spin-ice samples and the 16 vertex model.

Exact results for the statics of the 6 and 8 vertex models with inte-

grable systems methods. Very little is known for the dynamics.

• Our work :

Phase diagram of the generic model. Monte Carlo and Bethe-Peierls.

Stochastic dissipative dynamics after quenches into the D, AF and

FM phases. Metastability & growth of order in the AF and FM phases

Monte Carlo simulations & dynamic scaling.

Explanation of measurements in as-grown artificial spin ice.
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Natural spin-ice
3d : the pyrochlore lattice

Coordination four lattice of corner linked tetahedra. The rare earth ions

occupy the vertices of the tetrahedra ; e.g. Dy2 Ti2 O7

Harris, Bramwell, McMorrow, Zeiske & Godfrey 97
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Single unit
Water-ice and spin-ice

Water-ice : coordination four lattice. Bernal & Fowler rules, two H near and

two far away from each O.

Spin-ice : four (Ising) spins on each tetrahedron forced to point along the axes

that join the centers of two neighboring units (Ising anisotropy). Interactions im-

ply the two-in two-out ice rule.
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Artificial spin-ice
Bidimensional square lattice of elongated magnets

Bidimensional square lattice

Dipoles on the edges

Long-range interactions

16 possible vertices

Experimental conditions in this fig. :

vertices w/ two-in & two-out arrows

with staggered AF order

are much more numerous

AF 3in-1out FM

Wang et al 06, Nisoli et al 10, Morgan et al 12
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Square lattice artificial spin-ice
Local energy approximation ⇒ 2d 16 vertex model

Just the interactions between dipoles attached to a vertex are added.

Dipole-dipole interactions. Dipoles are modeled as two opposite charges.

Each vertex is made of 8 charges, 4 close to the center, 2 away from it. The

energy of a vertex is the electrostatic energy of the eight charge configura-

tion. With a convenient normalization, dependence on the lattice spacing ℓ :

ϵAF = ϵ5 = ϵ6 = (−2
√
2 + 1)/ℓ ϵFM = ϵ1 = · · · = ϵ4 = −1/ℓ

ϵe = ϵ9 = . . . ϵ16 = 0 ϵd = ϵ7 = ϵ8 = (4
√
2 + 2)/ℓ

ϵAF < ϵFM < ϵe < ϵd Nisoli et al 10

Energy could be tuned differently by adding fields, vertical off-sets, etc.
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The 2d 16 vertex model
with 3-in 1-out vertices : non-integrable system

FM AF 4in or 4out

3in-1out or 3out-1in

(Un-normalized) statistical weight of a vertex ωk = e−βϵk .

In the model a, b, c, d, e are free parameters (usually, c is the scale).

In the experiments ϵk are fixed and β is the control parameter.

The vertex energies ϵk are estimated as explained above.
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Static properties
What did we know ?

• 6 and 8 vertex models.

Integrable systems techniques (transfer matrix + Bethe Ansatz), mappings

to many physical (e.g. quantum spin chains) and mathematical problems.
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• 16 vertex model.

Integrability is lost. Not much interest so far.
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Static properties
What did we do ?

• Equilibrium simulations with finite-size scaling analysis.

− Continuous time Monte Carlo.

e.g. focus on the AF-PM transition ; cfr. experimental data.

AF order parameter : M− = 1
2

(
⟨|mx

−|⟩+ ⟨|my
−|⟩

)
with mx,y

− the staggered magnetization along the x and y axes.

− Finite-time relaxation M−(t) ≃ t−β/(νzc)

• Cavity Bethe-Peierls mean-field approximation.

− The model is defined on a tree of single vertices or 4-site plaquettes
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Equilibrium CTMC
Magnetization across the PM-AF transition

Vertex energies set to the values explained above.

Solid red line from the Bethe-Peierls calculation.
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Equilibrium analytic
Bethe-Peierls or cavity method

Join an L-rooted tree from the left ; an U-rooted tree from above ;

an R-rooted tree from the right and a D-rooted tree from below.

Foini, Levis, Tarzia & LFC 12
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is it a powerful technique ?
in, e.g., the 6 vertex model

With a tree in which the unit is a vertex we find the PM, FM, and AF phases.

sPM = ln[(a+ b+ c)/(2c)]

Pauling’s entropy sPM = ln 3/2 ∼ 0.405 at the spin-ice point a = b = c.

Location and 1st order transition between the PM and FM phases. 4

Location 4 but 1st order PM-AF transition. 8

no fluctuations in the frozen FM phase. 4

no fluctuations in the AF phase. 8

With a four site plaquette as a unit we find the PM, FM, and AF phases.

A more complicated expression for sPM (a, b, c) that yields

sPM ≃ 0.418 closer to Lieb’s entropy sPM ≃ 0.431 at the spin-ice point.

Location and 1st order transition between the PM and FM phases. 4

Location 4 but 2nd order (should be BKT) PM-AF transition. 8

fluctuations in the AF phase and frozen FM phase. 4
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Static properties
Equilibrium phase diagram 16 vertex model

• MC simulations & cavity Bethe-Peierls method

Phase diagram

critical exponents

ground state entropy

equilibrium fluctuations

etc.

Foini, Levis, Tarzia & LFC 12
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Artificial spin-ice
Bidimensional square lattice of elongated magnets

Bidimensional square lattice

Magnetic material poured on edges

Magnets flip while they are small

& freeze when they reach some size

(analogy w/granular matter)

Magnetic force microscopy

Images : vertex configurations

AF 3in-1out FM

Morgan et al 12 (UK collaboration)
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Vertex density
Across the PM-AF transition – numerical, analytic and exp. data
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Artificial spin-ice
As-grown samples : in equilibrium at β or not ?

Magnetic force microscopy Simulations
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A statistical and geometric analysis of domain walls should be done to

conclude, especially for samples close to the transition.

Research project with F. Romà
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Quench dynamics
Setting

• Take an initial condition in equilibrium at a0, b0, c0, d0, e0.

We used a0 = b0 = c0 = d0 = e0 = 1 that corresponds to T0 → ∞

• We evolve it with a set of parameters a, b, c, d, e in the phases PM,

FM, AF : an infinitely rapid quench at t = 0.

• We use stochastic dynamics.

We update the vertices with the usual heat-bath rule,

we implement a continuous time MC algorithm to reach long time

scales.

Relevant dynamics experimentally (contrary to loop updates used to study

equilibrium in the 8 vertex model)
Levis & LFC 11, 13
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Dynamics in the PM phase
MeDensity of defects, nd = #defects/#vertices

Relevant experimental sizes L = 50 L = 100

a = b = c, d/c = e/c = 10−1, 10−2, . . . , 10−8 from left to right.

For e = d
>∼ 10−4c the density of defects reaches its equilibrium value.

For e = d
<∼ 10−4c the density of defects gets blocked at nd ≈ 10/L2.

It eventually approaches the final value nd ≈ 2/L2 indep. of bc ; rough esti-

mate for teq from reaction-diffusion arguments.
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Dynamics in the AF phase
Snapshots

Color code. Orange background : AF order of two kinds ; green FM vertices,

red-blue defects.

Initial state coarsening state equilibrium state
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Isotropic growth of AF order for this choice of parameters

c ≫ a = b AF vertices are energetically preferred ;

there is no imposed anisotropy.
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Dynamics in the AF phase
Snapshots, correlation functions & growing length
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Dynamics in the FM phase
Snapshots

Growth of stripes

Quench to a large a value : black & white vertices energetically favored.
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Dynamics in the FM phase
Dynamic scaling and growing lengths
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Stretched exponential F (x) = e−(x/w)v with v∥ ≃ v⊥ ≃ 0.15 and ̸= w∥,⊥

the same growing length L∥(t), L⊥(t) ≃ t1/2

until a band crosses the sample, then a different mechanism.
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Summary
Classical frustrated magnetism ; spin-ice in two dimensions.

− The 2d 16 vertex model : a problem with analytic, numeric and

experimental interest. Cfr. artificial spin-ice

• Beyond integrable systems’ methods to describe the static properties.

− Some results of the Bethe-Peierls approximation are exact, others
are at least extremely accurate. Analytic challenge

• Slow coarsening (or near critical in PM) dynamics.

Stripes of growing ferromagnetic order in the FM phase, isotropic AF
growth for a = b, with the same growing length and scaling functions
but different parameters ;

LFM
∥ (t) ≃ LFM

⊥ (t) ≃ LAF(t) ≃ t1/2 Analytically ?

Dynamics blocked in striped states later.
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Equilibrium : the tree vs 2d
16 vertex model

• The cavity method can deal with the generic vertex model.

More complicated recursion relations, more cases to be considered, but no

further difficulties.

• The transition lines do not get parallelly translated with respect to the

ones of the 6-vertex model. ?
They are all of 2nd order. 4

They are remarkably close to the numerical values in 2d. 4

The exponents : on the tree they are mean-field, in 2d ? In progress.

• MF expression for ∆16 In 2d ?

• The quantum Ising chain for the 16 vertex model should include new

terms. In progress.
Foini, Levis, Tarzia & LFC 12
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Finite time relaxation
Magnetization across the PM-AF transition

ac = e−βce1 ≃ 0.3 with e1 = 0.45 ⇒ βc = 2.67± 0.02
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Fluctuations
Sketch

The probability of such fluctuations can be estimated with the Bethe-

Peierls calculation on a tree of four-site plaquettes !
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Dynamics in the AF phase
Density of defects & growing length (d = e here)

Isotropic growth of AF order with L(t) ≃ t1/2
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Dynamics in the FM phase
Density of defects (d = e here)
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Dynamics in the FM phase
Some elementary moves
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Dynamics in the D phase
Density of defects
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