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‣ fragility in glass transition
‣ dynamic heterogeneities
‣ MD for various model glasses
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‣  model detail dependence
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Fragility

Physical implication of 
fragility K？
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Simulations visualize Dynamic Heterogeneity (1995～)

Binary LJ spheres
(Donati-Douglas-Poole-Kob-Glotzer)

�

Schematic illustration of DH 
(Ediger)

Polydisperse WCA spheres
(Kawasaki-Tanaka)

It looks like a universal hallmark, doesn’t it?

ANALYSIS OF A GROWING DYNAMIC LENGTH SCALE IN . . . PHYSICAL REVIEW E 83, 051501 (2011)

how these slow and fast particles are distributed in space. In
the next section we examine the spatial correlations amongst
the slow particles. As we mentioned in the Introduction, these
particles form clusters and a dynamic correlation length can
be associated with the average spatial extent of the clusters.

IV. DYNAMIC SUSCEPTIBILITY AND
CORRELATION LENGTH

A. Introduction

To examine the spatial extent of the heterogeneous dynam-
ics, we start with a somewhat qualitative approach and look
at clusters of slow particles during τα utilizing a somewhat
arbitrary definition. To visualize these clusters we define the
slow particles as those whose displacement |r(t) − r(0)| was
less than a = 0.3 over a time t = τα . We then define two slow
particles to be in the same cluster if their initial positions were
less than dαβ + $αβ apart where dαβ = (dα + dβ)/2 and we
used $αβ = 0.02. Shown in Fig. 5 are clusters of more than
20 slow particles for φ = 0.55 and φ = 0.59. It is apparent
that the slow particles form clusters; moreover, there are more
large clusters at φ = 0.59 than at φ = 0.55.

The definition of the clusters shown in Fig. 5 is arbitrary.
Alternative definitions results in different clusters. For exam-
ple, a more common definition uses the separation of the initial
positions of slow particles corresponding to the first minimum,
rmin, of the respective pair correlation function,

gαβ(r) = V

Nα(Nβ − δαβ)

〈
Nα∑

n

Nβ∑

m"=n

δ(r − rnm)

〉

, (5)

where V is the volume, r = |r|, rnm = rn − rm, and the sums
are over particles of α and β type. Using such a definition we
find that the clusters span the entire simulation box for the
volume fractions studied in this work. This is not surprising:
by definition, during time τα on average 37% of the particles
are slow; spheres of diameter rmin centered on slow particles
occupy a fraction of the total volume that is clearly above
the continuum percolation threshold, and as a result we get a
spanning cluster.

To examine clusters of slow particles somewhat more quan-
titatively, one can generalize the pair correlation functions,
Eq. (5), and define a correlation function involving slow
particles only,

G4(r; t) = V

〈Ns(t)〉(〈Ns(t)〉 − 1)

×
〈

∑

n,m"=n

wn(t)wm(t)δ[r − rnm(0)]

〉

(6)

where microscopic single-particle overlap functions wn(t)
select slow particles, and 〈Ns(t)〉 is the average number of
slow particles—see Eqs. (2) and (3). Note that the summation
in Eq. (6) is over all, small and large, particles.

The function G4(r; t) is usually referred to as a four-point
pair correlation function. Note that by definition, in the
thermodynamic limit, G4(r; t) → 1 as r → ∞. By examining
G4(r; t) − 1 we can examine the correlations between slow
particles. In particular, the spatial extent of these correlations
manifests itself in a slower decay of G4(r; t) − 1 for large r .

FIG. 5. Slow particles’ clusters at τα containing more than 20
particles identified using the algorithm described in the text at φ =
0.55 (upper figure) and φ = 0.59 (lower figure). The white spheres
are the large particles, and the black spheres are the small particles.
Particles not belonging to the clusters are shown as black dots. The
upper box length is ∼52d1, and the lower box length is ∼51d1.

Investigation of the extent of the slow particles correlations
through a direct analysis of G4(r) is complicated by finite-size
effects. In particular, in the finite system canonical ensemble
the limiting large r value of G4(r; t) differs from 1 by a term
inversely proportional to the system size. To correct for this
effect in a somewhat quantitative way we determine the large
r limit of G4(r; t) by finding the average value of G4(r; t) − 1
from r = 25.5 to half the box length and then subtract this
average from G4(r; t). The four-point function corrected in
this way is denoted by Gc

4(r; t). This function is shown in
Fig. 6. We should emphasize that unlike in some other studies
[38–40] we do not use this four-point function for a quantitative
examination of the slow particle correlations. For the latter
task we found it more convenient to analyze the wave-vector-
dependent analog of G4(r; t).

Shown in Fig. 6 is Gc
4(r; τα) − 1 for φ = 0.57, 0.58, and

0.59. The slower decay for larger φ is evident, which indicates

051501-5

Binary hard spheres
(Flenner-Zhang-Szamel)

Binary LJ disks
(Berthier)

Binary soft disks
(Hurley-Harrowell)
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Purpose of this study:
Fragility vs. Dynamic Heterogeneities

How do collective motions lead to super-Arrhenius?

collective?
heterogeneous?

indivisual?
homogeneous?

Binary soft spheres
(Yamamoto-Onuki)



Is the model detail really trivial?

(a) Kob-Andersen LJ model (KALJ)

(b) Wahnström LJ model (WAHN)

(c) Hiwatari-Hansen softsphere model (SS)

Ni80P20

 ☐	 WAHN(K=0.64)
 △ SS       (K=0.42)

 ◯ KALJ   (K=0.27)

 ▽ NTW   (K=0.09)

(d) Coslovich-Pastore network model (NTW)

SiO2



4-point correlations for Dynamic Heterogeneities(2000～)
Glotzer, Berthier, Bilori, Chandler, Sastry, Szamel, ...

correlations of fluctuations in 2-point → 4-point

⇥(q)
4 (k, t) = h�Fq(k, t)�F�q(k, t)i

t=0
t

ξ

mobile

mobile

�

Schematic illustration of DH 
(Ediger)

We need 4-point correlations
to determine length time scales of DH!!

fluctuations in “local dynamics” δF(k, t)

High T

Low T

Kim-Saito, JCP(2013)

�
(q

)
4

F (k, t) = S(k) � exp[(�t/��)� ]Fr(k, t) = F (k, t) + �Fr(k, t)



t=0
t

ξ

mobile

mobile

3-time extension of 4-point correlations
Kim-Saito, PRE(2009), JCP(2010), JCP(2013)

0 scan time: τ

time interval: t

�4(t) � ��F (k, t)2�
⇥ exp[��/�hetero]?

⌧
hetero

vs ⌧↵?
We need 3-time correlations

to determine time scales of DH!!

F (k, t) = S(k) � exp[(�t/��)� ]

Mizuno-Yamamoto, PRE(2011)

Variance of F(k, t) → 4-point (1-time interval) 



Lifetime of Dynamic Heterogeneity remains controversial...

✓ ⌧
hetero

. ⌧↵

‣  Perera-Harrowell (binary soft discs) 

‣  Flenner-Szamel (Kob-Andersen LJ)

‣  Doliwa-Heuer (hard discs)

‣  Weeks (colloidal glasses)

‣  Yamamoto-Onuki, Mizuno-Yamamoto (binary soft spheres)

‣  Leonard-Berthier (fragile KCM model)

‣  Ediger, Richert, ... (NMR, hole-burning, photo-bleach) 

‣  Orrit, Kaufman, ... (single molecule experiments)

✓                              at low T ⌧
hetero

� ⌧↵

To resolve all controversy, we comprehensively 
examine multi-time correlation functions!!



Why use multi-time correlations?:
On the analogy of 2D-NMR and 2D-IR spectroscopies

mobile

mobile

F4(k, t3, t2, t1) = h⇢k(⌧3)⇢�k(⌧2)⇢k(⌧1)⇢�k(0)i
�F (k, t3, t2, t1) = F4(k, t3, t2, t1)� F (k, t1)F (k, t3)

3-time extension of χ4(t)

Key strategies:
 ① Analyze couplings of t1 - t3 motions
        if homogeneous dynamics,  ΔF→0
 ② Change the waiting time t2

        quantify relaxation time of DH τhetero

time
0 τ1 τ2 τ3

t1 t2 t3



0 τ1 τ2 τ3

t1 t2 t3
DH still survives for time scale 
longer than τα!!

τhetero > τα

 [WAHN fragile glasses] Change the waiting time t2:
How dose Dynamical Heterogeneity decay with time?

T=0.58 (low T)



0 τ1 τ2 τ3

t1 t2 t3
DH decays much faster than
τα even at low T !!

τhetero < τα

 [NTW strong glasses] Change the waiting time t2:
How dose Dynamical Heterogeneity decay with time?

T=0.32 (low T)



Result: Average lifetime τhetero

“Volume” of heterogeneous dynamics: �
hetero
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fragility

 ☐	 WAHN(K=0.64)
 △ SS       (K=0.42)

 ◯ KALJ   (K=0.27)

 ▽ NTW   (K=0.09)



Discussion: Is DH related to Locally Preferred Structures?

Coslovich-Pastore, JCP(2007)

Fs
!!k,t" =

1
N!

#
i=1

N!

$exp%ik · &ri!t + t0" − ri!t0"'() , !3"

where !=1,2 is an index of species and $) indicates an av-
erage over time origins t0. Relaxation times "! for species !
are defined by the condition Fs

!!k! ,"!"=1/e, where k! corre-
sponds to the position of the first peak in the number-number
structure factor !see Fig. 1". The value of k! is roughly
system- and temperature independent for the mixtures in
consideration, and close to k*8. In the following, we will
focus on the temperature dependence of "+"1, but similar
trends are observed when considering the small particles.

The difficulty of providing an unbiased, global descrip-
tion of the temperature dependence of transport coefficients
and relaxation times by fitting the experimental data has been
particularly stressed by Kivelson et al.38 Care must be taken
when the definition of fragility itself relies on a specific func-
tional form, or when the latter is used for extrapolations out-
side the accessible range of temperature. We thus seek func-
tional forms that are reliable over a large range of
temperature and require the range for fitting to be well-
specified and physically motivated. To describe the tempera-
ture dependence of relaxation times, we start with the well-
known Vogel-Fulcher-Tammann !VFT" law and write it in
the form39

"!T" = "# exp, 1
K!T/T0 − 1"- . !4"

The material-dependent parameter K quantifies the fragility
of the glass-former under consideration. The larger is K, the
steeper is the increase of "!T" upon supercooling. Equation
!4" provides a fairly good description of relaxation times in
the deeply supercooled regime, but is inaccurate at high
temperature.38 In the normal liquid regime, in fact, relaxation
times have a mild temperature dependence, which is well
described by the Arrhenius law. The existence of a crossover
between these two regimes around some temperature Tonset,

accompanied by several qualitative changes in the properties
of the liquid, is well established in the literature.40 It seems
thus sensible to use the following global functional form:

"!T" = ."#exp&E#/T' T $ T!

"!#exp, 1
K!T/T0 − 1"- T % T! / , !5"

where

"#! = "# exp,E#/T! −
1

K!T!/T0 − 1"- , !6"

as a generalized VFT law. This functional form is continuous

FIG. 3. Angell plot of relaxation times of large particles " for a selection of
AMLJ-& mixtures. Results are shown for &=0.60, 0.70, 0.73, 0.82 along the
isobar P=10. The reference temperature Tr is described in the text. The inset
shows the isobaric fragility index K obtained from generalized VFT equa-
tion &see Eq. !5"' against size ratio &.

FIG. 4. Angell plot of relaxation times of large particles " for BMLJ !black
circles" and WAHN mixture !white circles" along isobaric quenches at P
=10. The inset shows results at P=5, 10, 20, 50 for BMLJ.

FIG. 2. Temperature dependence of density '!T" along isobaric quenches at
P=10 !left axis, circles" and of pressure P!T" in isochoric quenches !right
axis, squares". Data are shown for BMLJ !filled symbols" and WAHN !open
symbols". Isochoric quenches were performed at '=1.2 for BMLJ and '
=1.3 for WAHN.

124504-4 D. Coslovich and G. Pastore J. Chem. Phys. 127, 124504 !2007"
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 ●	
 KALJ
 ☐	 WAHNincreases.49 To our knowledge, this is the first time that such

a relationship has been established in supercooled binary
mixtures. Previous numerical studies have focused, in fact,
on the connection between icosahedral ordering and super-
Arrhenius behavior in monoatomic liquids.6,7 The theoretical
interpretation of our results is by no means trivial. On the
one hand, the variation of fragility with icosahedral ordering
may be understood within the frustration-limited domains
theory10 in terms of a more rapid stabilization, upon super-
cooling, of locally preferred structures—in the present case,
icosahedra. We will further discuss this point below. On the
other hand, the trend we find in our simulations and shown in
Fig. 7 appears to be at variance with the results of a recent
phenomenological model.8,9 Further clarifications on the rel-
evance of this theoretical approach to our simulated systems
are required.

To gain a better feeling of how icosahedral ordering is
triggered by size ratio, we show, in Fig. 8, the fraction of
!0,0,12" polyhedra in local minima as a function of !. Re-
sults are shown along the isotherm T=2.0 and for T#Tr, i.e.,
at the lowest temperatures that could be accessed in equilib-
rium condition. Depending on temperature, a different range

of ! is considered. In the deeply supercooled regime
!T#Tr" only mixtures with 0.60"!"0.84 could be equili-
brated !see Sec. III". For variation of ! in this range, icosa-
hedral ordering increases with size ratio, in a way which
strongly resembles the increase of fragility index K with !,
reported in Sec. IV. At high temperature !T=2.0" the full
range 0.60"!"1.00 can be accessed and our data reveal the
existence of a maximum of icosahedral ordering around !
#0.82. This feature might provide a simple explanation to
the existence of a saturation of fragility around !=0.80 re-
ported in Sec. IV. Interestingly, the results obtained from
local minima at high temperature show that the variation of
icosahedral ordering with size ratio, which is apparent in the
deeply supercooled regime, is already encoded in the liquid
inherent structure.50

Such a pattern of variation of icosahedral ordering with
size ratio is strikingly similar to that observed in models of
bidisperse Cu glasses51 and in the realistic models of metallic
glasses developed by Hausleitner and Hafner.52,53 This sug-
gests that the increase of icosahedral ordering with size ratio,
and its consequent correlation with fragility, might be a gen-
eral feature of binary systems with additive, or nearly addi-

FIG. 9. Examples of locally preferred structures found in local minima of
supercooled Lennard-Jones mixtures. Small and large particles are shown as
dark and pale spheres respectively. !a" !0,2,8" polyhedron !twisted bicapped
square prism" in BMLJ. This is the most frequent chemical coordination,
incidentally one or two small particles can form the cap. !b" !0,3,6" polyhe-
dron !capped trigonal prism" in Ni33Y67. In this case, one of the caps is often
formed by a small particle. !c" !0,0,12" polyhedron !icosahedron" in WAHN.
On average, the coordination around the central particle is equimolar.

FIG. 10. Bond-angle distributions around small particles for WAHN !upper
plot", BMLJ !middle plot", and Ni33Y67 !lower plot". The bond-angle distri-
bution f121!#" is shown as a solid line. Also shown is the bond-angle distri-
bution f121!#" restricted to small particles which are at the center of the
locally preferred structure of the system, as given by Fig. 9. Data refer to the
lowest equilibrated temperature of each given system. The sharp peaks in
the f121!#" distributions filtered for locally preferred structures reflect the
ideal angles of the corresponding geometry.

124504-8 D. Coslovich and G. Pastore J. Chem. Phys. 127, 124504 !2007"
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increases.49 To our knowledge, this is the first time that such
a relationship has been established in supercooled binary
mixtures. Previous numerical studies have focused, in fact,
on the connection between icosahedral ordering and super-
Arrhenius behavior in monoatomic liquids.6,7 The theoretical
interpretation of our results is by no means trivial. On the
one hand, the variation of fragility with icosahedral ordering
may be understood within the frustration-limited domains
theory10 in terms of a more rapid stabilization, upon super-
cooling, of locally preferred structures—in the present case,
icosahedra. We will further discuss this point below. On the
other hand, the trend we find in our simulations and shown in
Fig. 7 appears to be at variance with the results of a recent
phenomenological model.8,9 Further clarifications on the rel-
evance of this theoretical approach to our simulated systems
are required.

To gain a better feeling of how icosahedral ordering is
triggered by size ratio, we show, in Fig. 8, the fraction of
!0,0,12" polyhedra in local minima as a function of !. Re-
sults are shown along the isotherm T=2.0 and for T#Tr, i.e.,
at the lowest temperatures that could be accessed in equilib-
rium condition. Depending on temperature, a different range

of ! is considered. In the deeply supercooled regime
!T#Tr" only mixtures with 0.60"!"0.84 could be equili-
brated !see Sec. III". For variation of ! in this range, icosa-
hedral ordering increases with size ratio, in a way which
strongly resembles the increase of fragility index K with !,
reported in Sec. IV. At high temperature !T=2.0" the full
range 0.60"!"1.00 can be accessed and our data reveal the
existence of a maximum of icosahedral ordering around !
#0.82. This feature might provide a simple explanation to
the existence of a saturation of fragility around !=0.80 re-
ported in Sec. IV. Interestingly, the results obtained from
local minima at high temperature show that the variation of
icosahedral ordering with size ratio, which is apparent in the
deeply supercooled regime, is already encoded in the liquid
inherent structure.50

Such a pattern of variation of icosahedral ordering with
size ratio is strikingly similar to that observed in models of
bidisperse Cu glasses51 and in the realistic models of metallic
glasses developed by Hausleitner and Hafner.52,53 This sug-
gests that the increase of icosahedral ordering with size ratio,
and its consequent correlation with fragility, might be a gen-
eral feature of binary systems with additive, or nearly addi-

FIG. 9. Examples of locally preferred structures found in local minima of
supercooled Lennard-Jones mixtures. Small and large particles are shown as
dark and pale spheres respectively. !a" !0,2,8" polyhedron !twisted bicapped
square prism" in BMLJ. This is the most frequent chemical coordination,
incidentally one or two small particles can form the cap. !b" !0,3,6" polyhe-
dron !capped trigonal prism" in Ni33Y67. In this case, one of the caps is often
formed by a small particle. !c" !0,0,12" polyhedron !icosahedron" in WAHN.
On average, the coordination around the central particle is equimolar.

FIG. 10. Bond-angle distributions around small particles for WAHN !upper
plot", BMLJ !middle plot", and Ni33Y67 !lower plot". The bond-angle distri-
bution f121!#" is shown as a solid line. Also shown is the bond-angle distri-
bution f121!#" restricted to small particles which are at the center of the
locally preferred structure of the system, as given by Fig. 9. Data refer to the
lowest equilibrated temperature of each given system. The sharp peaks in
the f121!#" distributions filtered for locally preferred structures reflect the
ideal angles of the corresponding geometry.
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fragility

P=10. The value of !c /!o tends to 1 at high temperature in
all systems and increases more markedly by decreasing tem-
perature, as the fragility of the system increases. Around Tr,
we find that relaxation times within icosahedral domains dif-
fer by roughly an order of magnitude from those outside,
whereas prismatic structures in nonadditive mixtures develop
a more modest separation of time scales.

The dynamical impact of locally preferred structures is
assisted, at low temperature, by an increased lifetime of such
slow domains. To address this point we proceeded similarly
to Donati et al.,58 introducing a single-particle function "i!t"
that equals 1 if particle i is at the center of a given Voronoi
polyhedron, and 0 if not. Restricting our attention to small
particles, we computed the autocorrelation function58

#!t" = #
i=1

N2

$"i!t""i!0"% −
np

2

N2
, !8"

where np=#i=1
N2 $"i!0""i!0"% is the average number of small

particles at the center of a given polyhedron. We estimated
the lifetime !p of a polyhedron from the condition #!!p"
=#!0" /e. Independent of the polyhedron in consideration,
the normalized autocorrelation function #!t" /#!0" falls rap-

idly to zero in the normal liquid regime. As the temperature
is lowered, polyhedra corresponding to locally preferred
structures become more long-lived than the others, as ex-
pected. Around Tr, we find that #!t" /#!0" for locally pre-
ferred structures decays to zero within the time scale given
by the decay of Fs

2!k! , t". In Table IV, we report the lifetimes
!p of some frequent polyhedra found at the lowest equili-
brated temperatures for WAHN, BMLJ, and Ni33Y67. In
WAHN and BMLJ, the lifetime of polyhedra corresponding
to locally preferred structures is around an order of magni-
tude larger than those of other geometries. Interestingly, in
the case of Ni33Y67, we find that some less frequent polyhe-
dra, such as !0,2,8" polyhedra, have a lifetime comparable to
that of our putative locally preferred structure, suggesting the
existence of competing structures. We also find that icosahe-
dra tend to have a longer lifetime, relative to the typical
structural relaxation times, than prismatic structures.

The relation between fragility and local order, which is
apparent from our simulation data, fits rather well into the
scenario of the frustration-limited domains theory.10 Accord-
ing to this approach, glass formation arises from the compe-
tition of a tendency to form mesoscopic, stable domains,
characterized by locally preferred structures, and a mecha-
nism of frustration, which prevents these domains from tiling
three-dimensional space. Fragility turns out to be propor-
tional to the energetic stability of such domains and inversely
proportional to the strength of frustration. At present, the
roles of stability and frustration cannot be clearly disen-
tangled. Nevertheless, the following considerations, based on
the present work, are possible and we hope they could serve
as guidelines for further theoretical modeling or investiga-
tions: !i" In the case of additive mixtures, within the explored
range of size ratio, icosahedral ordering seems to be the most
prominent structural feature. Results obtained for isolated
Lennard-Jones clusters29 suggest that the maximum of icosa-
hedral ordering around $&0.84 might be related to an en-
hanced energetic stability of equimolar icosahedra, i.e.,
icosahedra with the same number of large and small neigh-
bors. Formation of more stable icosahedral structures would,

FIG. 14. Dynamical impact of locally preferred structures, as identified by
the temperature dependence of the ratio !c /!o !main plot" and !n /!o !insets"
at P=10. See the text for definition of !c, !n, and !o. Upper plot: AMLJ-$
mixtures for $=0.60, 0.70, 0.73, 0.82. Lower plot: BMLJ !filled circles",
WAHN !open circles", and Ni33Y67 !stars". The dotted line drawn at 1 indi-
cates the high-temperature limit.

TABLE IV. Lifetime !p of most frequent Voronoi polyhedra around small
particles. Results are obtained from local minima at the lowest equilibrated
temperatures !T&Tr". Also shown is the ratio !p /!2, where !2 is the relax-
ation time obtained from the condition Fs

2!k! ,!"=1/e.

T&Tr

Signature !p !p /!2

WAHN !0,0,12" 2000 1.6
!0,1,10,2" 90 0.1
!0,2,8,2" 60 0.0
!0,3,6,4" 60 0.0

BMLJ !0,2,8" 800 0.4
!0,3,6" 200 0.1

!1,2,5,3" 70 0.0
!1,2,5,2" 40 0.0

Ni33Y67 !0,2,8" 2500 0.5
!0,3,6" 1600 0.3

!0,3,6,1" 1300 0.3
!1,2,5,2" 90 0.0

124504-11 Fragility in mixtures. I J. Chem. Phys. 127, 124504 !2007"
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 ●	
 KALJ
 ◯	 WAHN

Tg  / T

τ α
τ L
S 

/ τ
α

fragility

Kim-Saito, JCP(2013)
 ☐	 WAHN(K=0.64)
 △ SS       (K=0.42)

 ◯ KALJ   (K=0.27)

 ▽ NTW   (K=0.09)

Are long-lived icosahedral 
LPSs related to τhetero?



Discussion: Is DH related to Locally Preferred Structures?

Leocmach-Tanaka, Nat. Commun.(2012)

Are long-lived icosahedral 
LPSs related to τhetero?

PMMA polydisperse colloids 
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(w6,Q6) plane is shown in Fig. 2c-d, which con!rms that the two 
tendencies are present in the supercooled liquid of hard spheres. 
In particular, icosahedra are present even at a relatively low volume 
fraction (Fig. 2d). Both tendencies become more pronounced for 
deeper supercooling (Fig. 2c). Furthermore, Fig. 2c shows clearly 
that icosahedral order and crystalline order are incompatible and 
frustrate one another.

Bond order mobility. In the introduction, we mentioned the 
dynamic propensity invented by Widmer-Cooper and Harrowell11 
as a trick only accessible via simulations. In our system, as we know 
the relevant structural order parameters (w6 and Q6), we can com-
pute the square displacement of all the particles with the same ini-
tial local structure (iso-bond order ensemble) and call it bond order 
mobility. We de!ne the w6-mobility as
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where the brackets denote ensemble averaging. r2(Q6,t) and 
r2(w6,Q6,t) can be de!ned in the same way. "e iso-con!gurational  

propensity is very powerful, as it does not require any a priori infor-
mation on structures and thus can probe any static order if it exists. 
"is feature is absent in the bond order mobility, which instead has 
the merit of accessibility even in a system that cannot be restarted  
ab libitum from exactly the same overall con!guration. In general, 
the two quantities are not equivalent.

Figure 3 shows the bond order mobility (calculated at the char-
acteristic time of the dynamical heterogeneity, tdh). Both structural 
order parameters have a clear correlation with the dynamics: the 
more structured is the environment, the more likely the particle will 
be slow. For all volume fractions, the mobility displays the same lin-
ear dependence on w6 (Fig. 3b). Once scaled by the mean square 
displacement, all points collapse on the same line. "is is not the 
case for the Q6 dependence (Fig. 3c), which is more and more pro-
nounced with increasing the degree of supercooling. In our most 
deeply supercooled sample, the crystal-like environments can be 
in average 10 times slower than the bulk, whereas even the almost 
perfect icosahedra are in average only 40% slower than the bulk. 
A complete screening of all the possible BOO mobilities excludes 
a link of slow dynamics to any other local symmetries (including 
exotic amorphous order), at least in our system.

To explain our mobility data, we can refer to the cage picture, 
where a particle is considered as trapped in the cage formed by its 
neighbours. Once the particle has escaped from its cage, it is free  
to di#use. In general, this picture is not correct due to dynami-
cal heterogeneity, or nonlocal cooperativity of motion. In the case  
of the icosahedral environment, however, it seems to hold: the 
normalization by the bulk mean-square displacement takes into 
account the di#usion once out of the cage, and the remaining uni-
versal dependence on w6 holds the information about the ‘quality’ of 
the cage. E$cient packing makes the 13 particles icosahedra more 
stable than a disordered structure. "us, the central particle has  
a low probability to escape from its cage and start di#using. A%er 
cage escaping, however, it di#uses in average like any other par-
ticle. "is suggests that the in&uence of icosahedral order on the 
dynamics is only local because of its isolated character. By contrast, 
the non-trivial  dependence of the Q6 mobility calls for non-local 
explanations.

Real space patterns and length scale. To observe the ordered 
regions in real space, we de!ne the thresholds w6* and Q6* so that the 
bond order mobility at the threshold is half between the bulk and 

(4)(4)

the (extrapolated) perfect structure. In our most deeply supercooled 
sample, this criterion yields Q6* = 0.25 for crystal-like structures  
(Fig. 3d) and w6* = 0.023 for icosahedral structures (Fig. 3e). "ese 
thresholds are arbitrary but coherent with each other. We display 
in Fig. 4b typical con!gurations of the ordered neighbourhoods in  
our deepest supercooled sample. With our thresholds, we see only 
small patches of icosahedral order that are not reaching medium 
range, whereas clusters of crystal-like order are much larger than 
icosahedral clusters and their sizes reach medium range.

Here it may be worth stressing that MRCO does not correspond 
to crystal nucleus (compare Fig. 4a,b). However sub-critical nuclei 
are not unrelated to crystal-like BOO. Nuclei are systematically 
embedded into much larger MRCO. One can explain this phenom-
enon as perfect wetting of the nuclei by coherently bond-ordered 
regions38. We note that the size of the crystal nuclei is smaller than 
the critical nucleus size and thus they appear only transiently. Fur-
thermore, examples of crystal-like structures without embedded 
crystal nucleus, in addition to the continuity of Q6 values (Fig. 2),  
suggest that the crystal nuclei are the extreme part of the bond 
order &uctuations. Indeed it has been shown in hard spheres38–41, 
Gaussian-core model42 and probably Wahnström binary Lennard– 
Jones24 that parts of MRCO (&uid regions with a structure remi-
niscent of the crystal) act as precursors to crystallization if the local 
density there is high enough. However in these systems, the pres-
ence of precursors to crystallization does not imply the formation 
of a critical nucleus and growth. Furthermore, MRCO is always 
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Figure 3 | Bond order mobility. (a) Normalized mobility in the (w6,Q6) 
plane for our most deeply supercooled sample (  = 0.575  0.03). The 
colour scale is saturated at 1.5 times the bulk mean square displacement. 
(b,c) Normalized mobility for icosahedral and crystalline order parameters 
respectively at volume fraction 0.535 (blue squares), 0.555 (brown 
triangles) and 0.575 (red diamonds), all   0.03. Bulk mean square 
displacement is scaled to be at 1 (horizontal line). Perfect structures are 
on the edge of each plot, as indicated by the arrows. The lines are a guide 
for the eye, stressing the collapse of the w6 mobility at all volume fractions 
in b and the absence of such collapse in c. The scattering at low volume 
fractions is due to poor averaging of rare structures. Straight lines in a–c 
correspond to the important thresholds: Q6

* , w6
*  and w6

dod. Examples of 
crystal-like cluster and distorted icosahedron at the respective threshold 
values are shown in d and e, respectively.
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present (transiently) in the supercooled liquid: MRCO are usual 
!uctuations of the system, as common as the fast and slow regions 
of the dynamic heterogeneity33. We also note that the average den-
sity within MRCO is the same as within disordered liquid regions 
and thus di"erent from within crystal nuclei38.

Now we consider a link between static spatial structures and 
dynamics. Re!ecting the short-range nature of icosahedral order, 
we were not able to extract the associated lengthscale that would 
grow when approaching the glass transition. By contrast, the spa-
tial extent of crystal-like BOO is well described by G6(r), the spa-
tial correlation function of Q6m (see, for example, Tanaka et al.33). 
Both dynamical and structural lengthscales (de#ned in Methods) 
are increasing while approaching the glass transition in a coherent 
manner (inset of Fig. 1d). We can see that near 0, the growth of 
both dynamic and static correlation length can be well expressed by 
the same power law equation (3), although the range is rather lim-
ited. In agreement with Tanaka et al.33, it suggests that the dynami-
cal heterogeneity in hard spheres is a manifestation of critical-like 
!uctuations of the crystal-like BOO parameter, and neither those of 
icosahedral nor amorphous order. In relation to this, we stress that 
G6(r) is not sensitive to aperiodic structures such as icosahedral and 
amorphous order (Methods).

Of course, one can set a more permissive threshold on w6 and 
observe more icosahedra. A percolating network of icosahedral 
neighbourhood can even be found at a high volume fraction if the 
threshold encompasses enough particles (Fig. 5c). However, the 
imperfect icosahedra particles that must be included to form this 

network have a mobility comparable to the bulk (Fig. 3b). Fur-
thermore, we checked that this percolation is of the 3D random 
percolation class (cluster size distribution follows a power law of  
exponent 2.1, Fig. 3a), meaning that a comparable network could 
be obtained by picking randomly the same number of particles  
(Fig. 5d). We conclude that the concept of an icosahedral network is 
not physically meaningful, at least in our system.

As a #nal but an intuitive check, we compare the spatial reparti-
tion of stable crystal-like order (Fig. 4c) and slow particles (Fig. 4d). 
As shown in Berthier and Jack12, the correlation between structure 
and dynamics is not a one-to-one correspondence at the particle 
level but a statistical relationship on larger length scales. We were 
able to show visually this correlation by averaging out short time 
(tdh/2) !uctuations of Q6; by calculating the square displacement 
of each particle over 2 4.5tdh, which allow to accumulate many 
rearrangement events; and by coarse-graining this value over the 
particle’s neighbours12 (see equation (14) in Methods). Figure 4d 
displays the 10% slowest particles according to this criterion and 
their neighbours. $e correlation of shape and size is clearly seen 
between Fig. 4c,d, although it is not perfect. $e slight disagreement 
comes from the following: some clusters of FCC-like order disap-
pear soon a%er the initiation of the displacement measurement and 
some particle groups, which come back to their original positions 
a%er the period of 2  , can be accounted as slow particles. We could 
#nd no such correlation between icosahedral particles (Fig. 4b) and 
slow regions.

Note that we recover the correlation between crystal-like order 
and slowness by two independent methods: directly in instantaneous 
BOO space via mobility on moderate times; and indirectly via posi-
tions and shapes of (short time averaged) ordered regions coherent 
with those of slowest regions (on long times). In the former method,  
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Figure 4 | Computer reconstruction from confocal microscopy 
coordinates in our most deeply supercooled sample. Depth is about 12 .  
Only particles of interest and their neighbours are displayed. Each particle 
is plotted with its real radius. (a) Particles with more than seven crystalline 
bonds. (b) A typical configuration of bond-ordered particles. Icosahedral 
particles are shown in the same colour if they belong to the same cluster. 
If a particle is neighbouring both crystal-like and icosahedral structures, 
it is displayed as icosahedral. (c) Crystal-like particles alone (the order 
parameter was averaged over tdh/2). (d) Slow particles with respect to  
the coarse-grained displacement. Because of particles going in and out  
of the field-of-view, assignment of particles located very near the edges  
of c and d were not accurate and have been removed.
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Figure 5 | Imperfect icosahedral clusters. (a) Cluster size distribution 
for nearly percolating threshold (w6 <  − 0.012). The exponent of random 
percolation ( − 2.1) is given by the straight line. (b) Radius of gyration 
(indicating a fractal dimension df  2 given by the straight line) for the 
case of a. (c) Size of the largest non-percolating cluster as a function of 
the threshold on w6. Percolation takes place near w6  − 0.011. Vertical 
lines indicate the position of w6*  and w6

dod, respectively. (d) Translation 
of c in terms of the fraction of activated particles (dots) together with 
the probability of the onset of percolation when particles are randomly 
activated (grey shading). We can see that activating particles as a function 
of icosahedral order and those activated randomly have almost the same 
percolation threshold ( 7.5% of the particles activated).
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present (transiently) in the supercooled liquid: MRCO are usual 
!uctuations of the system, as common as the fast and slow regions 
of the dynamic heterogeneity33. We also note that the average den-
sity within MRCO is the same as within disordered liquid regions 
and thus di"erent from within crystal nuclei38.

Now we consider a link between static spatial structures and 
dynamics. Re!ecting the short-range nature of icosahedral order, 
we were not able to extract the associated lengthscale that would 
grow when approaching the glass transition. By contrast, the spa-
tial extent of crystal-like BOO is well described by G6(r), the spa-
tial correlation function of Q6m (see, for example, Tanaka et al.33). 
Both dynamical and structural lengthscales (de#ned in Methods) 
are increasing while approaching the glass transition in a coherent 
manner (inset of Fig. 1d). We can see that near 0, the growth of 
both dynamic and static correlation length can be well expressed by 
the same power law equation (3), although the range is rather lim-
ited. In agreement with Tanaka et al.33, it suggests that the dynami-
cal heterogeneity in hard spheres is a manifestation of critical-like 
!uctuations of the crystal-like BOO parameter, and neither those of 
icosahedral nor amorphous order. In relation to this, we stress that 
G6(r) is not sensitive to aperiodic structures such as icosahedral and 
amorphous order (Methods).

Of course, one can set a more permissive threshold on w6 and 
observe more icosahedra. A percolating network of icosahedral 
neighbourhood can even be found at a high volume fraction if the 
threshold encompasses enough particles (Fig. 5c). However, the 
imperfect icosahedra particles that must be included to form this 

network have a mobility comparable to the bulk (Fig. 3b). Fur-
thermore, we checked that this percolation is of the 3D random 
percolation class (cluster size distribution follows a power law of  
exponent 2.1, Fig. 3a), meaning that a comparable network could 
be obtained by picking randomly the same number of particles  
(Fig. 5d). We conclude that the concept of an icosahedral network is 
not physically meaningful, at least in our system.

As a #nal but an intuitive check, we compare the spatial reparti-
tion of stable crystal-like order (Fig. 4c) and slow particles (Fig. 4d). 
As shown in Berthier and Jack12, the correlation between structure 
and dynamics is not a one-to-one correspondence at the particle 
level but a statistical relationship on larger length scales. We were 
able to show visually this correlation by averaging out short time 
(tdh/2) !uctuations of Q6; by calculating the square displacement 
of each particle over 2 4.5tdh, which allow to accumulate many 
rearrangement events; and by coarse-graining this value over the 
particle’s neighbours12 (see equation (14) in Methods). Figure 4d 
displays the 10% slowest particles according to this criterion and 
their neighbours. $e correlation of shape and size is clearly seen 
between Fig. 4c,d, although it is not perfect. $e slight disagreement 
comes from the following: some clusters of FCC-like order disap-
pear soon a%er the initiation of the displacement measurement and 
some particle groups, which come back to their original positions 
a%er the period of 2  , can be accounted as slow particles. We could 
#nd no such correlation between icosahedral particles (Fig. 4b) and 
slow regions.

Note that we recover the correlation between crystal-like order 
and slowness by two independent methods: directly in instantaneous 
BOO space via mobility on moderate times; and indirectly via posi-
tions and shapes of (short time averaged) ordered regions coherent 
with those of slowest regions (on long times). In the former method,  
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Figure 4 | Computer reconstruction from confocal microscopy 
coordinates in our most deeply supercooled sample. Depth is about 12 .  
Only particles of interest and their neighbours are displayed. Each particle 
is plotted with its real radius. (a) Particles with more than seven crystalline 
bonds. (b) A typical configuration of bond-ordered particles. Icosahedral 
particles are shown in the same colour if they belong to the same cluster. 
If a particle is neighbouring both crystal-like and icosahedral structures, 
it is displayed as icosahedral. (c) Crystal-like particles alone (the order 
parameter was averaged over tdh/2). (d) Slow particles with respect to  
the coarse-grained displacement. Because of particles going in and out  
of the field-of-view, assignment of particles located very near the edges  
of c and d were not accurate and have been removed.
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Figure 5 | Imperfect icosahedral clusters. (a) Cluster size distribution 
for nearly percolating threshold (w6 <  − 0.012). The exponent of random 
percolation ( − 2.1) is given by the straight line. (b) Radius of gyration 
(indicating a fractal dimension df  2 given by the straight line) for the 
case of a. (c) Size of the largest non-percolating cluster as a function of 
the threshold on w6. Percolation takes place near w6  − 0.011. Vertical 
lines indicate the position of w6*  and w6

dod, respectively. (d) Translation 
of c in terms of the fraction of activated particles (dots) together with 
the probability of the onset of percolation when particles are randomly 
activated (grey shading). We can see that activating particles as a function 
of icosahedral order and those activated randomly have almost the same 
percolation threshold ( 7.5% of the particles activated).
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Summary: Dynamic Heterogeneities and Fragility
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