Selection, large deviations and metastability
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1. Dynamics with selection
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@ A cell performs complex dynamics: DNA codes for the
production of proteins, which themselves modify how the
reading is done. A bit like a program and its RAM content.

@ DNA contains about the same amount of information as the TeXShop program for Mac

@ This dynamics admits more than one attractor: same DNA
yields liver and eye cells...

@ The dynamical state is inherited.

@ On top of this process, there is the selection associated to
the death and reproduction of individual cells
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Stern, Dror, Stolovicki, Brenner, and Braun

An arbitrary and dramatic rewiring of the genome of a yeast cell:

the presence of glucose causes repression of histidine
biosynthesis, an essential process

Cells are brutally challenged in the presence of glucose, nothing
in evolution prepared them for that!
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Stern, Dror, Stolovicki, Brenner, and Braun

A

OD (600 nm)
e
s
log, expression

I

OD (600 nm)
log, expression

0.014

-100 0 100 200 300 400
Time (h)

() Dynamics with selection, large deviations and 5/36



Stern, Dror, Stolovicki, Brenner, and Braun
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Figure2 The g¢ id The ray levels at eight time points for the two experiments, (left) no 3AT, (right) 40 mM 3AT, in a color
code: red—induced, green—repressed. There are a total of 4148 genes that passed all filters (see Materials and methods). The medium switch from galactose to
glucose is marked and the numbers above the columns are the measurement points as shown in Figure 1. Note the differences between the pattems of expression for
the two experiments (rows correspond to the same gene in both experiments).
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@ the system finds a transcriptional state with many changes

@ two realizations of the experiment yield vastly different
solutions

@ the same dynamical system seems to have chosen a
different attractor whichis then inherited over many generations
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If this interpretation is confirmed, we are facing a dynamics in a
complex landscape

with the added element of selection

but note that fitness does not drive the dynamics, it acts on its
results

the landscape is not the ‘fithess landscape’
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2. The relation between

a) Large Deviations,

b) Metastability

c¢) Dynamics with selection and phase transitions
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a pendulum immersed in a low-temperature bath
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a pendulum immersed in a low-temperature bath
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Imposing the average angle, the trajectory shares its time
between saddles 0° and 180°

(1)
1801
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| D[§]P(trajectory) [fo o(t') dt' — tb,

= [d\ / D[0]P(trajectory) o 6@ dt o=xtd,

canonzcal

canonical version, with \ conjugated to ¢

= [ D[§)P(trajectory) e*Jo 6 d¥
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e )\ is fixed to give the appropriate 6 (Laplace transform variable)

« a system of walkers with cloning rate \9(¢)

&= {4 (T4 +sin(0))} P— A0 P

yields the ‘canonical’ version of the large-deviation function
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o the relation is useful for efficient simulations

« but also to understand the large deviation
function

Dynamics with selection, large deviations and



Relation with selection

We wish to simulate an event with an unusually large value of A

without having to wait for this to happen spontaneously

but without forcing the situation artificially
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independent simulations
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with probability c . A per unit time kill or clone

continue ...

——

a way to count trajectories weighted with ¢
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Dynamical phase transitions

large deviations of the activity

JP Garrahan, RL Jack, V Lecomte, E Pitard, K van Duijvendijk, and
Frederic van Wijland
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Competition between colonies

&

A=Ain A A=Ain B

A —Ap+1/7
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e A collection of metastable states

e each with its own emigration rate

¢ and its cloning/death rates dependent upon the observable

One way to understand the relation between
metastability and large deviations
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Large deviations with metastability as first order
transitions: space time view

A dynamics: e.g. Langevin: T; = —f,(x) +n;

= add all trajectories with weight: S[z] = —1 [ dt {z; + fi(2)}*...

For small T, all trajectories that stay in a metastable state
; = f; = 0 contribute ‘almost’ the same
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in detail

\J

cost ~ escape rate cost ~ \In(escape time)

ice-water at -0.001 °C
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Large deviations and first order

Large deviation function (e*/ #Ally — [ dAP(A)e

= trajectories with weight:
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The observable A chooses the phase, for ) just larger than the
escape rate

cost ~ escape rate cost ~ \In(escape time)

+Ain A

Another way to understand the relation between
metastability and large deviations
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Activity, ‘glass’ transition Garrahan and Jack
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Champagne cup potential - spherical coordinates

O(N)
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Champagne cup potential - Phase diagram
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3. A model

G Bunin, JK
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M individuals. Attractors with timescale 7, and reproduction

rate )\,

QA

P@)
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Without selection pressure the population reaches a finite
(smallish) (1)

As soon as the )\; are turned one, the stationary state
dissappears

(1) = oo, and A ~ Az
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Evolution of attractor lifetime

@ (7)(t)~t if P(1) ~7~%apower law with o > 2
o (r)(t) ~t2 i P(r) ~e "
o (r)(t) ~ts i P(r) ~e

Population divergence time
fitness/mutation-rate (anti)correlation

Q@ tyy ~t if P(1) ~ 7~ a power law with o > 2
@ l4in ~ 12 if P(T)
@ty ~ 1> if P(1)
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Aging curves
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How can we understand this anti-intuitive result?

1/t

max
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aging
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@ Most of the population stays in states with untypically large
stability

@ Average fithess of the population hardly improves with time

@ At large times, lineages present at the beginning manifest
themselves!

e We may understand this from the large-deviation point
of view
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