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Physics of Perfect Crystals

• Start with T=0 perfect crystal
– look at vibrational, electronic, etc. properties
– add defects as perturbation (chapter 30)
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Perturbing away from the crystal
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Perturbing away from the crystal
But what about this?
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Perturbing away from the crystal

Is there an opposite pole to the perfect crystal, 
corresponding to rigid solid with complete disorder?

If so, we could describe ordinary solids as somewhere in between

But what about this?
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C. S. O’Hern, S. A. Langer, A. J. Liu and S. R. Nagel, Phys. Rev. Lett. 88, 075507 (2002).

C. S. O’Hern, L. E. Silbert, A. J. Liu, S. R. Nagel, Phys. Rev. E 68, 011306 (2003).

• Study models with smooth transitions 
– from G/B=0 (like liquid)
– to     G/B>0  (like crystal)

Jamming Transition for “Ideal Spheres”
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Bubble model for foams 
D. J. Durian, PRL 75, 4780 
(1995).
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Onset of Jamming in Repulsive Sphere Packings
         

–        (2D)  

                                                      (3D)Zc = 5.97 ± 0.03
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Verified experimentally:
G. Katgert and M. van Hecke, EPL 92, 
34002 (2010).Durian, PRL 75, 4780 (1995).

O’Hern, Langer, Liu, Nagel, PRL 88, 075507 (2002).
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Isostaticity

• What is the minimum number of interparticle contacts 
needed for mechanical equilibrium?

• No friction, N repulsive spheres, d dimensions
• Match

– number of constraints (number of interparticle normal 
forces)=NZ/2

– number of degrees of freedom =Nd-d

• For large N, Z ≥ 2d

James Clerk Maxwell
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Contact Number of Crystal vs. Marginally Jammed Solid
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crystal: Z=12
marginally jammed solid: Z=Ziso=6
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Constraint Counting and G/B
• At onset of overlap, φc, can constrain 

– all soft modes
– compression of the whole system

• So B>0 but G=0 so G/B=0

• Above φc, G/B >0 so φc also marks onset of jamming
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Constraint Counting and G/B
• At onset of overlap, φc, can constrain 

– all soft modes
– compression of the whole system

• So B>0 but G=0 so G/B=0

• Above φc, G/B >0 so φc also marks onset of jamming
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G/B -> 0 with (ϕ-ϕc)1/2 or Z-Zc appears unique to jamming

X. Mao, A. Souslov, T. C. Lubensky

G/B

ϕc ϕ

hexagonal/fcc/
kagome/....

G/B

Zc Z

twisted kagome

randomly decorated square

jamming

ϕc ϕ

G/B

Z

G/B

Zc

Z

G/B

Zc

jamming

randomly diluted hexagonal/fcc/... 
randomly decorated kagome/....

G/B

Zc Z

Tuesday, July 16, 13



Mechanics of crystal vs. marginally jammed solid
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Consequence: Diverging Length Scale

•For system at φc, Z=2d

•Removal of one bond makes entire 
  system unstable by adding a soft 
  mode

•This implies diverging length as φ-> φc +

For φ > φc, cut bonds at boundary of size L
Count number of soft modes within cluster 

Define length scale at which soft modes just appear 

� 

Ns ≈ L
d−1 − Z − Zc( )Ld

M. Wyart, S.R. Nagel, T.A. Witten, EPL 72, 486 (05)

 
 L 

1
Z − Zc

≡
1
Δz
 φ − φc( )−0.5
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Define ℓ* as size of smallest macroscopic rigid cluster for 

system with a free boundary of any shape or size

• ℓ* diverges at Point J as expected from scaling argument

More precisely
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Define ℓ* as size of smallest macroscopic rigid cluster for 

system with a free boundary of any shape or size
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Vibrations in Disordered Sphere Packings
• Crystals are all alike at low T or low ω

– density of vibrational states D(ω)~ωd-1 in d dimensions

– heat capacity C(T)~Td

• Why? 
Low-frequency excitations are sound modes.  At long 

length scales all solids look elastic 

Tuesday, July 16, 13



Vibrations in Disordered Sphere Packings
• Crystals are all alike at low T or low ω

– density of vibrational states D(ω)~ωd-1 in d dimensions

– heat capacity C(T)~Td

• Why? 
Low-frequency excitations are sound modes.  At long 

length scales all solids look elastic 

BUT near at Point J, there is a 
diverging length scale ℓL

So what happens?
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Vibrations in Sphere Packings

• New class of excitations originates from soft modes at 
Point J   M. Wyart, S.R. Nagel, T.A. Witten, EPL 72, 486 (05)

• Generic consequence of diverging length scale: ℓL≃cL/ω*

 ω * /ω0  Δφ
1/2

� 

ω *
D(ω)

L. E. Silbert, A. J. Liu, S. R. Nagel, PRL 95, 098301 (‘05)

 
ω0 ≡

keff
m  Δφ

α−2( )/2

ℓT≃cT/ω*
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Vibrations in Sphere Packings

• New class of excitations originates from soft modes at 
Point J   M. Wyart, S.R. Nagel, T.A. Witten, EPL 72, 486 (05)

• Generic consequence of diverging length scale: ℓL≃cL/ω*
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Vibrations of crystal vs. marginally jammed solid

perfect crystal
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Vibrations of crystal vs. marginally jammed solid

perfect crystal
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Back to extreme limits
How do we connect physics of jamming and physics of 
crystals?  What happens in between?
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1. start with a perfect FCC crystal

2. introduce 1 vacancy-interstitial pair

3. minimize the energy

2d illustration

Back to extreme limits
How do we connect physics of jamming and physics of 
crystals?  What happens in between?
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1. start with a perfect FCC crystal

2. introduce 1 vacancy-interstitial pair

3. minimize the energy

2d illustration

Back to extreme limits
How do we connect physics of jamming and physics of 
crystals?  What happens in between?
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1. start with a perfect FCC crystal

2. introduce 1 vacancy-interstitial pair

3. minimize the energy

2d illustration

Back to extreme limits
How do we connect physics of jamming and physics of 
crystals?  What happens in between?
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1. start with a perfect FCC crystal

2. introduce 2 vacancy-interstitial pairs

3. minimize the energy

2d illustration

Back to extreme limits
How do we connect physics of jamming and physics of 
crystals?  What happens in between?
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2d illustration

1. start with a perfect FCC crystal

2. introduce 3 vacancy-interstitial pairs

3. minimize the energy

Back to extreme limits
How do we connect physics of jamming and physics of 
crystals?  What happens in between?
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1. start with a perfect FCC crystal

2. introduce M vacancy-interstitial pairs

3. minimize the energy

2d illustration

Back to extreme limits
How do we connect physics of jamming and physics of 
crystals?  What happens in between?
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1. start with a perfect FCC crystal

2. introduce N vacancy-interstitial pairs

3. minimize the energy

2d illustration

Back to extreme limits
How do we connect physics of jamming and physics of 
crystals?  What happens in between?
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Order Parameter

Bond-orientational order

qlm(i) ⌘
X

j

Ylm(r̂ij)

Sl(i, j) �
X

m

qlm(i) · q⇤lm(j)

f6(i) = fraction

of highly correlated

neighbors (large S6)

Auer and Frenkel. J. Chem. Phys., 120(6):3015, 2004
Russo and Tanaka. arXiv, cond-mat.soft, 2012.

f6 = 1 ! crystal

f6 = 0 ! disordered
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“Coexistence” of ordered and disordered regions
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Connecting jamming and crystal physics

Observed states
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log p

Wyart, et al. PRE 72 051306 (2005)
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What about systems with intermediate order?
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Elasticity
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Elasticity
fcc
fcc+vac/int
fcc+vacancies
bcc+vacancies
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Exclude crystalline states
• Include only states where disordered “phase” percolates 

in all 3 directions
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Exclude crystalline states
• Include only states where disordered “phase” percolates 

in all 3 directions
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Exclude crystalline states
• Include only states where disordered “phase” percolates 

in all 3 directions
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Exclude crystalline states
• Include only states where disordered “phase” percolates 

in all 3 directions
States with 
intermediate 
to low order 

fall on 
“jamming 
surface”

Jammed 
state is not 

only extreme 
limit but also 
very robust
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How much does jamming scenario apply to real world?
• What have we left out?  ALMOST EVERYTHING

– friction
K. Shundyak, et al. PRE 75 010301 (2007); E. Somfai, et al. PRE 75 020301 (2007); S. 
Henkes, et al. EPL 90 14003 (2010).

– long-ranged interactions/attractions
N. Xu, et al. PRL 98 175502 (2007).

– non-spherical particle shape
Z. Zeravcic, et al, EPL, 87, 26001 (2009); M. Mailman, et al, PRL 102, 255501 (2009)

– temperature
C. Schreck, et al. PRL 107, 078301 (2011); A. Ikeda, et al. J. Chem. Phys. 138, 12A507 
(2013); L. Wang and N. Xu, Soft Matt. 9, 2475 (2013); T. Bertrand, et al. arXiv:1307.0440.
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Real, Thermal Colloidal Glasses
Video microscopy of 2D jammed packing of 
colloids
• NIPA microgel particles ⇒ tune packing fraction

• Track particles over ~30 000 frames ⇒

Extract instantaneous displacements from 
average position

and the displacement correlation matrix

Chen et al., PRL 105, 025501 (2010)
Ghosh et al., Soft Mat 6, 3082 (2010)

microscope
objective

Ke Chen, Wouter Ellenbroek, Arjun Yodh
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• BUT displacement correlation is an equilibrium property, 
independent of dynamics

• Can use it to obtain vibrational modes of shadow system 
with same configuration & interactions but without damping

• In harmonic approximation

• Partition function

• Correlation matrix is inverse of stiffness matrix K

Colloids are damped, atoms/molecules are not

V =
1
2
uTKu

Z = du exp(−βV )∫

C = uu = K −1

Ghosh, Chikkadi, Schall, Kurchan, Bonn, Soft Mat 6, 3082 (2010)
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Dispersion relation and elastic constants

• From dispersion relation extract sound velocities
• From sound velocities extract elastic constants

B

G
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G/B behavior
• Recall that G/B does not depend on potential
• For frictionless particles, 

where 

• For frictional particles, E. Somfai, et al. PRE 75, 020301 (2007).

where  

�z ⌘ z � z0c = 3.3(�� �0
c)

�z ⌘ z � z1c = 3.3(�� �1
c )
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PNIPAM particles are frictional

• one adjustable parameter   

frictional

frictionless

�1
c
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G, B 
• Interaction most consistent with Hertzian (K. Nordstrom, et al. PRL 

105, 175701 (2010))

B/keff

G/keff

ke↵ =

p
3✏

2�2

�
�� �µ

c )
1/2

kBT/✏ = 3⇥ 10�6

µ ⇡ 0.6 K. Shundyak, et al. PRE 75, 
010301 (2007).

Tuesday, July 16, 13



G, B 
• Interaction most consistent with Hertzian (K. Nordstrom, et al. PRL 

105, 175701 (2010))

B/keff

G/keff
two adjustable parameters

ke↵ =

p
3✏

2�2

�
�� �µ

c )
1/2

kBT/✏ = 3⇥ 10�6

µ ⇡ 0.6 K. Shundyak, et al. PRE 75, 
010301 (2007).
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Jamming and temperature

A. Ikeda, L. Berthier and G. Biroli, J. Chem. Phys. 138, 12A507 (2013)
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Effect of Temperature

kBT* is temperature at 
which T=0 description 
breaks down

Bertrand, et al.

where C(N) ! 0 as N ! 1
Ikeda, et al.

Wang and Xu

kBT
⇤/✏ ⇡ 0.2(�� �c)

5/2

kBT
⇤/✏ ⇡ 10�3(�� �c)

5/2

kBT
⇤/✏ ⇡ C(N)(�� �c)

5/2

log(�� �c)

log kBT/✏
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Effect of Temperature

kBT* is temperature at 
which T=0 description 
breaks down

Bertrand, et al.

where C(N) ! 0 as N ! 1
Ikeda, et al.

Wang and Xu
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Quasilocalized modes predict rearrangements above Tg

• Color contours:  Sum (polarization vector magnitudes)2 for each 
particle over lowest 30 vibrational modes

• white circles: particles that rearranged in relaxation time interval   
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Figure 3 A comparison of the spatial distribution of IR and low-frequency normal modes. Contour plots of the low-frequency mode participation (as in Fig. 2), overlaid
with the location of particles (white circles) whose iso-configurational probability of losing four initial nearest neighbours within 200� is greater than or equal to 0.01.

Two points are worth emphasizing. The mode participation
fractions, whose spatial distributions are mapped in Fig. 2, are
properties of the static initial configurations. Our demonstration
of a strong correlation between the mode maps and the
irreversible reorganization maps constitutes a significant success
in understanding how structure determines relaxation in an
amorphous material. Indeed, as Fig. 2 illustrates, we may provide
semiquantitative prediction of IR domains as they emerge at
relatively long times from the initial configuration alone. The
second point is that, because we have used quenched modes, we
have used only information about the bottom of the local potential
minima. While it is quite possible that the timescale required for a
reorganization event will depend on the energy barriers associated
with the transition, our results indicate that the spatial structure
of such events is largely determined by the distribution of soft
quasilocalized modes in the initial configuration.

Given our conclusion that relaxation originates with soft
quasilocalized modes, it follows that our capacity to predict the
subsequent spatial distribution of the IR depends on how persistent
the mode distribution is in a configuration. After all, should the
mode maps evolve rapidly then the structural information in a
given configuration would quickly become irrelevant. The fact that
we observe strong spatial correlations between the initial modes
and relaxation some 200� later indicates that the spatial structure of
the modes does generally persist over such times. This is remarkable
given that small variations in the quenched modes, indicative of a
change in the local minimum (or inherent structure), occur over
�1� intervals. Details of these rapid changes are provided in the
Supplementary Information. We conclude that the spatial structure
of the quenched soft modes can often persist over many changes
in the inherent structure. Preliminary results indicate that this

persistence is also found in three-dimensional mixtures (including
temperatures below the empirical mode-coupling temperature)
(see the Supplementary Information).

We do, however, see configurations where the mode structure is
not so stable. An example of this is shown in Fig. 4. In Fig. 4a,b we
compare the mode participation map for the initial configuration
with the map of the maximum participation fraction observed per
particle over five 10� runs starting from the configuration in Fig. 4a.
The diVerence in spatial structure between these maps is a measure
of the degree of variability of the mode structure. In Fig. 4c,d we
overlay the particles showing IR within 200� (as defined in Fig. 3)
over the maps of Fig. 4a,b, respectively. While the mode structure of
the initial configuration does not provide a quantitative predictor
of the spatial distribution of IR (Fig. 4c), the cumulative mode
structure sampled over the multiple short runs does (Fig. 4d). This
result demonstrates that, even when the soft-mode structure is not
stable, the IR still originates with these soft modes, but now this
IR is not well predicted by any single configuration. It seems that
configurations such as that analysed in Fig. 4 represent those caught
in transit between configurations with more stable mode structure.

In this paper we have presented two important results relating
to the slow relaxation in a model supercooled liquid. The first is
that the irreversible reorganization originates at the sites of the
low-frequency quasilocalized quenched modes. The second is that
these modes typically persist for timescales significantly longer than
the lifetime of a given inherent structure. These results show that
the spatial location and extent of IR regions at relatively long
times may be reasonably predicted by a simple, static property
of the static initial condition. A number of previous reports have
linked localized dynamics with the presence of soft modes16–20
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Quasilocalized modes predict rearrangements above Tg

• Color contours:  Sum (polarization vector magnitudes)2 for each 
particle over lowest 30 vibrational modes

• white circles: particles that rearranged in relaxation time interval   
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Figure 3 A comparison of the spatial distribution of IR and low-frequency normal modes. Contour plots of the low-frequency mode participation (as in Fig. 2), overlaid
with the location of particles (white circles) whose iso-configurational probability of losing four initial nearest neighbours within 200� is greater than or equal to 0.01.

Two points are worth emphasizing. The mode participation
fractions, whose spatial distributions are mapped in Fig. 2, are
properties of the static initial configurations. Our demonstration
of a strong correlation between the mode maps and the
irreversible reorganization maps constitutes a significant success
in understanding how structure determines relaxation in an
amorphous material. Indeed, as Fig. 2 illustrates, we may provide
semiquantitative prediction of IR domains as they emerge at
relatively long times from the initial configuration alone. The
second point is that, because we have used quenched modes, we
have used only information about the bottom of the local potential
minima. While it is quite possible that the timescale required for a
reorganization event will depend on the energy barriers associated
with the transition, our results indicate that the spatial structure
of such events is largely determined by the distribution of soft
quasilocalized modes in the initial configuration.

Given our conclusion that relaxation originates with soft
quasilocalized modes, it follows that our capacity to predict the
subsequent spatial distribution of the IR depends on how persistent
the mode distribution is in a configuration. After all, should the
mode maps evolve rapidly then the structural information in a
given configuration would quickly become irrelevant. The fact that
we observe strong spatial correlations between the initial modes
and relaxation some 200� later indicates that the spatial structure of
the modes does generally persist over such times. This is remarkable
given that small variations in the quenched modes, indicative of a
change in the local minimum (or inherent structure), occur over
�1� intervals. Details of these rapid changes are provided in the
Supplementary Information. We conclude that the spatial structure
of the quenched soft modes can often persist over many changes
in the inherent structure. Preliminary results indicate that this

persistence is also found in three-dimensional mixtures (including
temperatures below the empirical mode-coupling temperature)
(see the Supplementary Information).

We do, however, see configurations where the mode structure is
not so stable. An example of this is shown in Fig. 4. In Fig. 4a,b we
compare the mode participation map for the initial configuration
with the map of the maximum participation fraction observed per
particle over five 10� runs starting from the configuration in Fig. 4a.
The diVerence in spatial structure between these maps is a measure
of the degree of variability of the mode structure. In Fig. 4c,d we
overlay the particles showing IR within 200� (as defined in Fig. 3)
over the maps of Fig. 4a,b, respectively. While the mode structure of
the initial configuration does not provide a quantitative predictor
of the spatial distribution of IR (Fig. 4c), the cumulative mode
structure sampled over the multiple short runs does (Fig. 4d). This
result demonstrates that, even when the soft-mode structure is not
stable, the IR still originates with these soft modes, but now this
IR is not well predicted by any single configuration. It seems that
configurations such as that analysed in Fig. 4 represent those caught
in transit between configurations with more stable mode structure.

In this paper we have presented two important results relating
to the slow relaxation in a model supercooled liquid. The first is
that the irreversible reorganization originates at the sites of the
low-frequency quasilocalized quenched modes. The second is that
these modes typically persist for timescales significantly longer than
the lifetime of a given inherent structure. These results show that
the spatial location and extent of IR regions at relatively long
times may be reasonably predicted by a simple, static property
of the static initial condition. A number of previous reports have
linked localized dynamics with the presence of soft modes16–20

during or immediately before the appearance of the motion in
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• The marginally jammed state represents extreme limit at 
the opposite pole from the perfect crystal

• The behavior of systems over a wide range of order/
disorder follows jamming scaling

• So the marginally jammed is a robust extreme limit--more 
robust than the perfect crystal

• Jamming scenario provides conceptual basis for commonality 
of low temperature/frequency properties of disordered 
solids

• relevance to glass transition is still an open question

Summary
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