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Random packings of hard spheres

|

Physﬁcs Mathematics Applications

Granular matter Information theory

Random close packing (RCP)
Shannon (1948)

Bernal packings (1960) f(1)

o_»g{ - T\W/TTI\_T

Signals — High dimensional spheres

2. High-dimensional packings

3. Non-spherical shapes

1. Edwards ensemble for grains
and glass theory

O

\/olume fraction Force distribution
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Theoretical approach I: Statistical mechanics (Edwards’ ensemble)
Edwards and Oakeshott, Physica A (1989)

Constraint optimization problem

Minimize volume (X=0) with constraint of force balance
(T=0) and non-overlaping.

OPTIMIZATION |STATISTICAL PHYS EDWARDS
instance sample packing
cost function energy volume
optimal configuration ground state RCP at X=0
minimal cost ground state energy minimal volume
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Theoretical approach Il: Mean field theory of jammed hard-sphere

Pressure. P

(remnant of RSB solution from replica theory)
Parisi and Zamponi (2010)

Y

. [ ' -o Jammed states: J-line

| s —0
liquid state |
, | | . :
splits * ;
\ | max{> + s}

[=]
i Replica theory: jammed states are

4 the infinite pressure limit of metastable

hard sphere glasses
Volume fractiond b, by O bsep i

» Approach jamming from the liquid phase.
» Predict a range of RCP densities [¢t1, dccp| ~ [0.64, 0.68]

* Mean field theory based on RSB solution in the glass
phase.
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(un)Commonalities between Edwards ensemble and RT: 3d
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Very difficult in practice: very small range for 3d equal-size spheres

0.66f

06401

2006) for details. The quantity 3;(p) = 22

E ‘ A = //
E > — 10’
074F /.’ 3 0t /
. [ . /
048 — 0’ / i
F it 10° /
0.72F E ] N
£ 10 N
- =0 e
— - Pade EOS // e
—-= Glass fit

— Equilibrium | ]

/= 10°

7| — a0

/| — 16%10°
32¢10°
6410

— 12810°

= 0=,

4d

p(p)—d

show first a drop in the pressure, which signals
from Eq.(9) of (Bishop and Whitlock, 2005))

drrp = 4/(4 + 2V3)
|

and leave it at a density that depends on «. In this case no crystalliz
fit to the high-density part of the pressure (glass branch). The arrow
the liquid to the glass branch.

qbedw — 6/<6 -+ 2\/§)

l |
| | T
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1. Full solution: Constraint optimization problem

T=0 and X=0 optimization problem

v

2. Approximation: Decouple forces from geometry.

3. Edwards for volume ensemble 4. Cavity method for
+ |sostaticity force ensemble
- —
6 wlz N
Z(X,Z) =/ exp [— ( )] g(z)dz M=) > fabNab
Z X a=1 | \b,(ab)eE
Song, Wang, Jin, Makse, Physica A (2010) Bo, Mari, Song, Makse (2013)
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The Volume function is the Voronoi volume

contact network

A second

coordination
shell

consist of all points
closer to the center of the
grain than to any other
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“Easily” generalizable to other systems

\J
\
\
\
\
\
\
\\
\

equal size \

spheres polydisperse

system

ellipsoids, spherocylinders,
non-convex particles, rods,
sphere/ellipsoids mixtures,
etc.

any dimension
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“Easily” generalizable to other systems

equal size \

spheres polydisperse

system

ellipsoids, spherocylinders,
non-convex particles, rods,
sphere/ellipsoids mixtures,
etc.

any dimension
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Analytical formula for Voronoi boundary

\Voronoi
particle .

CIJ>¢

1 1 Tii O\ °
Wi=2 ¢ (55min—2-)d
37{ 2R IIllel cos 0; °

Important: global minimization. Reduce to one-dimension
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Analytical formula for Voronoi boundary

\Voronoi
particle .

i
P>y

1 1 Tii O\ °
Wi=2 ¢ (55min—2-)d
37{ 2R IIllel cos 0; °

Important: global minimization. Reduce to one-dimension
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Analytical formula for Voronoi boundary

Voronoi

particle . /

\/// \

\ .

\ \

\ \\

AS ——— —>
Tij//COS Hij S

1 1 . r. . 3
W, = = (— min — ) ds
3 2R 5 cosb;;
Important: global minimization. Reduce to one-dimension
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Analytical formula for Voronoi boundary

\Voronoi
particle .

\ Y
\ \
\ \
\
> . e
s el ) /
)\ \\\\ !

1 1 . r. . 3
W, = = (— min — ) ds
3 2R 5 cosb;;
Important: global minimization. Reduce to one-dimension
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Average free-volume per particle

w = /1 (- ple)de /O (B 1)dPa (o

Voronoi

boundary Geometrical

V* ( C) interpretation

of cumulative dist:

- -o

: /c =r/cosf P- (c)
5 0P (¢)
S > .
ac T p(C)

NS Probability to find all
particles outside excluded
volume and surface:

57 (c) Vi)  S*(c)
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Mean-field approximation analogous to
decorrelation principle

particles belong to bulk or in contact:

P-(c) = Pg(c) x P,(c) Particle

gas

N ——— —

-~
—

go(r) = —o(r—1)+06(r—1)
PSd—1

g(r)

T ————

0F

1 2 3 4 5 O
T

=

S

Similar to car parking
Vl* (c) problem (Renyi, 1960).

| | Probability to find a spot
V ~ with V7(¢) in a volume V

e [PV =(1-VHV)T etV
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Calculation of P>(c)

Particles are in contact and in the bulk:

P (c) = Pg(c) x Pc(c)

Bulk term:

mean free volume density

Contact term:

Po(e)=e 2 4

Z = geometrical coordination number

mean free surface density
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Average Voronoi volume

P (c) = Pp(c) x Pc(c)

1 1 V3 1
P©) =ew |- (@ -n-30-D) - Yaa- )
Self-consistent equation:
V3 1

C

wzv/ol(c‘g— 1) dexp [— %((63— 1) —3(1 — %)) — 732:(1— —1]

equal to zero

W = represent the average free-volume of
2 ——— a single particle
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Prediction: volume fraction vs z

free volume volume function
2\/§ b = 2
W = - Z—I—Q\/§
Equation of state agrees well with simulations
and experiments
rRcp
f @ ~ Aste, JSTAT 2006
2 =0 £ 1] A X-ray tomography
b — 1 L A 300,000 grains et
— T = i 8 ST 4
\/g , : K
— 6\/_ ' 5:C .
6+ 2v3 ;’\r ‘
¢ = .634 5. SN SN Y heory
- 85 055 06 0.65 07 07
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Definition of jammed state: geometric coordination z
bounded by mechanical coordination Z

4:d—|—1§Z<2d—6

{4 = 00

/< z2<2d=06
Nd positions

geometrical
ZN/2 constraints

z < 2d

effectively excludes the ordered states r; —rij| = 2R
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Edwards phase diagram for hard spheres

|sostatic plane

PrLP(Z) =

Forbidden zone
" no disordered jammed
packings can exist

RLP line

X—= 00

Z
Z+2+/3

G lme w =0

GRLP =

= 0.536

¢'
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(J-point)
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Jammed packings in high dimensions

: Minkowsky lower bound: ¢ ~ 274
Rigorous bounds _ _ : N
Kabatiansky-Levenshtein upper bound: ¢ ~ 272990«

Question: what's the density of RCP in high dimensions?

Conjecture: are disordered packings more optimal than ordered
ones?
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Conjecture: P.(c) becomes valid in the high-dimensional limit

-1

(I) Theoretical conjecture of g, in high d
(neglect correlations)

Torquato and Stillinger, Exp. Math., 2006

E 3d
> 3 j
1 E : Large d
)~ —2br—1)+0(r—1) o hM o o
pPSd—1 [ |
! 1 2 3 4 5 6

(Il) Factorization of P.(c)

P (c) = Pp(c)Pc(c)
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Comparison with other theories

4

()N—

o—d

|sostatic packings (z = 2d) with
unique volume fraction

Jin, Charbonneau, Meyer, Song, Zamponi,
PRE (2010)

Agree with Minkowski lower bound

o€ [6.26d274,d In(d)2~1]| Isostatic packings (z = 2d)

Parisi and Zamponi, Rev. Mod. Phys. (2010)

ranging volume fraction
increases with dimensions

No unified conclusion at the mean-field level (infinite d). Neither dynamics nor jamming.

Does RCP in large d have higher-order correlations missed by theory?: Test of replica th.

Edwards solution seems to corresponds to Cbt h . Higher entropy state.
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Generalizing the theory of monodisperse sphere packings

/N

Polydisperse spheres Non-spherical objects

(dimers, triangles, tetrahedra,
spherocylinders, ellipsoids ... )

QO

Distribution of angles P(S)

Distribution of radius P(r)

Extra degree of freedom
treated as in Onsager 1949
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Optimizing random packings in the

space of object shapes

e Simulation results on

packings of ellipsoids:

» Ellipsoids pack denser than
spheres
» Peak at aspect ratio

a~14

» Spheres appear as a
singular limit

0-74 T T T T I T T T T I T T T T I T T T T

A %o
072 L s 0
- e,
% 07 — FF ““E] G)/ <
® A
S { o o
5068 @ _
= -' oo ®
b0
H o ’
0.66 |- i 4 i ]
.-' 96
o ®
0-64 1 1 1 1 l 1 1 1 1 é 1 1 1 1 l 1 1 1 1 l 1 1 1 ’:(:l": l 1 1 1 1 l 1 1 1 1
0 0.5 1 1.5 2 25 35

Aspect ratio

Donev et al, Science 2004

Wednesday, July 17, 13



Edwards prediction

L
 Non-spherical objects: O \L o=

Z<2df
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Edwards prediction

L
 Non-spherical objects: O \L o=

qb(O:)/: QS(Z(O‘)? O‘)

¢(Z, )

Statistical theory of
Voronoi volume

Z<2df

Wednesday, July 17, 13



Edwards prediction

L
 Non-spherical objects: O \L o=

pla) = o(Z(a),a)

VAN

o(Z, ) Z (o)
Statistical theory of Evaluating the probability of
Voronoi volume degenerate configurations:
ellipsoids are hypoconstrained
z < Qdf
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Voronoi for non-spherical shapes

Object shape Decomposition Effective Voronoi interaction
] A\
a -
'/ v @
[ ®
NS
Sphere One sphere Two points
- 4
e ™
GO & @
|\“
Two spheres Four points
7
N

Trimer Three spheres

Six points
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General non-spherical shapes

e N
| @
Spherocylinder N spheres Two lines and four points
- J
. TR ™
e R \ x
Ellipsoid Two spheres Two lines and four anti-points
- o/
g " N\
f ‘ 8 L\ """ ' \ >
Tetrahedron Four spheres Six lines, four points, four anti-pointg
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Decomposition

N unéquél spheres

Wednesday, July 17, 13

Effective Voronoi interaction

26




Spherocylinders

e Separation lines:

* Four different interactions:
* Line—Line
* Line —Point

* Point — Line Exact equation for each case
e Point — Point ——> analytic expressions
for VB
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Calculation of coordination number:
Degenerate configurations

4 )
* Mechanical equilibrium: 7,
3 force equations =
4
* 2 torque equations T
(torque along symmetry axis E—
vanishes) . r
U i
Linearly independent?
- J

Z. =2ds =10

—> Effective number of degrees of freedom
can be reduced!
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Degenerate configurations

* Mechanical equilibrium:
* 3 force equations

* 2 torque equations

(torque along symmetry axis
vanishes)

Linearly independent?

—> Effective number of degrees of freedom
can be reduced!

Wednesday, July 17, 13



Degenerate configurations

* Mechanical equilibrium:
* 3 force equations

* 2 torque equations

(torque along symmetry axis
vanishes)

Linearly independent?

Maximal degenerate configuration: Condition
of force balance automatically implies torque

balance! -
—  Z(a) =2({ds(a))
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Th tical predictions
104~ —A—a—= P —— 0.741 Py FCC
: % ‘*\ xz:’_:: \\‘..‘.—_.. - 1 O 72: ‘/‘ \“‘ .,,"‘"\\/ N
L / ’ . - I o~
I ‘3‘ ‘/ ,,‘ " Q\\ Th eo ry i ,‘/: ‘\‘ ,', - A 'Q\
L / - L Nemnl N
| O Y | omp /s Voo R
i \ l'",'l AN ] I \ / u | N
= e 7 \‘ { =7 o068} ! ,,’ N\, "\
N 8 vy & . = | $ ¥ W e
I 1 l,’l v \ ' \ ~, ]
s 0.66} \ \ s
- 5 18 - Vi o \ ®
-1 “ " -4~ Lens-shaped particles theory ] 0.64f Rcp ‘\4' ‘\\ 1
_ \ § --~- Ellipsoids theory 07 M \ ]
'1"-' --- Dimers theory | -~ Lens-shaped particles theoryTh ‘\ ;
i --e-- Spherocylinders theory 0.62F _a- Dimers theory eory ]
- | --o-- Spherocylinders theory | ]
05 1.0 15 2.0 25 05055 1.0 15 2.0
o o
spherocylinder Abreu et al. 2003 ([
M&M candy Donev et al. 2004 \ 4
spherocylinder Lu et al. 2010 [ |
spherocylinder Jia et al. 2007
spherocylinder | Williams et al. 2003
S | mu Iatl ons dimer Schreck etal. 2011 | A
dimer Faure et al. 2009
spherocylinder | Kyrylyuk etal. 2011 | ¥
spherocylinder Bargiel et al. 2008 >
oblate ellipsoid Donev et al. 2004 | «
spherocylinder | Wouterse et al. 2009
prolate ellipsoid | Donev et al. 2004 | A 31
spherocylinder Zhao et al. 2012
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Results for packing fraction: dimers

0.74 -
0.72 ]
[ B~ ]
0.70} AT e, 1
[ w9 :
— i -V V. 1
[ oy ]
5 068 - / // \\\ _
= - Ty v :
[ S~
0.66 | I/ S8 ]
N N
0.64 _—_"/// \\‘\‘\\ _
0.62:— v === Dimers theory \.\\v ;
! —-¥ - Schreck & O’Hern, 2011 \. ]
060 L ! : . ' L ! ! ' L L L L L L L l L A . L
1.0 1.2 1.4 1.6 1.8 2.0
0.
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0.74
0.72
0.70"
0.68!
0.66!
0.64|
0.62|
0.60"

Results for packing fraction:

spherocylinders

- _ FCC
.’,‘.- -‘_~*
B V4 g ~~‘ v
/ - A \\ A - A _
L I, //‘//"/‘_—‘\\ \\A\\\A
N1 W _
/! g~ N ¢
Y -
/A s/ > :
= * ]
o ¥ ‘\\ _
Y \ 3
II/// --@ - Spherocylinders theory ]
[ A - —-& - Zhao et al, 2012
—@ 4 - Kyrylyuk et al, 2011
. RCP - - Lu etal 2010
1.0 1.2 1.4 1.6 1.8 2.0
A

(o)
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Edwards phase diagram for many
shapes

T T T T e T /
12 € FCC g -
. lll. Aspherical /
’
Tetrahedra (Haji-Akbari et al 2009) ,’
’
Tetrahedra (Jaoshvili et al 2010) e
’
Aspherical ellipsoids (Donev et al 2004) ,/
10— e = e o - /’ ]
- - -.-—___.~~ "..._. S
. . ~ g
" Il. Rotationally symmetric ,".'
o PR ,
Prolate ellipsoids (Donev et al 2004) ,/ h ,¢.
s
/_9\_ Oblate ellipsoids (Donev et al 2004) o - " ,,/,”
T\l’ 8t Spherocylinders (Zhao et al 2012) lad ""Oé i
, .
Spherocylinders (Wouterse et al 2009) ‘.6' Spherical ordered
Spherocylinders (Williams & Philipse 2003) » branch
A Dimers (Schreck & O’Hern 2011) “
4
»*’
@
6l 2 i
_|. Spherical RCP —-#= Dimers theory
Spherical random --@-= Spherocylinders theory
branch === Analytic continuation, Eq.(3)
| 1 1 | 1 1 | 1 1 | 1 1 | 1 1
0.55 0.60 0.65 0.70 0.75 0.80

RCP is not singular: analytical continuation of‘spheres

¢
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Summary

Ode to Edwards!
1. Edwards ensemble to predict RCP for spheres.
2. Edwards ensemble for non-spherical particles.

3. Edwards ensemble for packings in large dimensions to compare
with replica theory of hard sphere glasses.

4. Edwards replica trick or cavity method for proper average over
quenched disorder for force distribution for any system: spheres,
non-spheres, friction and frictionless, any dimension.

5. Extending Maxwell argument: Cavity method at RS level for
solution-no solution transition to calculate Z; from frictionless
Isostatic grains to frictional grains.

6. Edwards CAVEAT: 1 - 5 done at expense of drastic (yet
controlled) approximations.
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Cavity Method for Force Transmission

Edwards volume ensemble predicts: ¢(Z)

Cavity method predicts Z: 2 ()
and Force Distribution: P(f)
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Force transmission problem: back to
Edwards (simplest model)

Edwards model = g-model = annealed disorder average
Fix Z/ =4
Find
P(f)

with constraint

f=—(fi+ 2+ f5)
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Boltzmann equation for P(7)

>\2f2 . component
guenched disorder

Boltzmann equation:

assuming uncorrelated forces (MF)

P(f) = /P(fh)\1)P(f2,)\2)7()\1,)\2)5(f — ALf1 — Ao f2)dArdAadf1dfs

Edwards: “Tiresomely complicated function well
annealed disorder , modelled by integrating between 0 and 1"
Fourier transform: P(f) = ie -
p
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Annealed versus quenched disorder

Experimentally: first find the distribution for a fixed (quenched)
packing, then average over the ensemble of packings

Average must be carried over a physical observable: free energy,
not the partition function.

guenched disorder annealed disorder

F=—-kTInz F=—kT InZ

}

Replica trick(Edwards-Anderson)
InZ = lim(Z" —1)/n

n—0

i Granular matter:
Cavity Method =———> Performed average over forces
then over contact network
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Building the factor graph of contacts from a

packing
Interaction(particle)
site(contact force)
Q'(f] f
I ( )

® Xa({fnaftaﬁavfa}aa)

Xa({f" f5 7% € 0a) = 6 (Z ﬁ“) 0 (Z Ty X f:“) < [T etrmelus — 1)

1€0a 1€0a 1€0a

40
Constraint: force balance + torque balance + repulsive + Coulomb
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Compute marginal belief for a fix contact
network Q'(f7, f7)

D

IO

()

Q
Q

al Xa
particle
contac \ c—sj n .
force \Q ( ] 7f])
C
Cavity field: no average over n;
QD = o / di; [ dffdfidi; Q7 (fF f)xa{f", £ 7 o)
jEJa—1i
c=90j—a Belief propagation

Q'(f!, ) = —QH( JHQTS D, {aby =00,
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Force probability over an ensemble of

random graphs

Degree distribution

Joint distribution of contacts positions on one particle

1\>

P(f")

Solved with Population Dynamics

R(2) / i{nj} Hdn;DQﬂQ(Qﬂ) Q7 -Fo({Q 7))

—\
® ) Cavity equation
. 1 . . .
P(fn,ft) — <Qz(fn,ft)> — Z [/ DQa_}ZQ(QCL—)Z)Qa_m(fn,ft)]
Prediction: P ( f) ~ f@ 9 p— signature of jamming
(A) 10° ¢ ——————— (B) 10’ T —
i 2D frictionless (z.=4) ] 3D frictionless (z,=6) ]
{/; 10" b exp(-2f/<f>) @ 107! exp(-2f/<f>)
N =
Al | A
10
1072 10-2:_ 102
10 ' .
0 1 2 3 4 0 1 2 3 4
JI<f> JI<f> 42
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Cavity Method: General Formalism | Algorithm

The Population Dynamics Algorithm

* G(V, E), Initialize all cavity fields { " %(f;)}.

 Draw an integer z with (edge-perspective) degree distribution P(z).
e Then pick at random z-1fields ¥’ ~"(f;) from the population of N fields.

 Generate a set of relative contact directions 7V4(1)5 «-+5 T (2—1)
with uniform distribution ; Particles do not overlap.

« update the new cavity field ¥*~*(fi) by using the incoming fields
according to cavity equation.

» Update all cavity fields to generate a new population. Rescale <f>=const. Run
until convergence, or until the number of iterations exceeds T, ,

x*

Lin Bo (CCNY) Cavity Method for Jammed Disordered Packings of Hard Particles
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Force probability over an ensemble of
random graphs P, (f", f*)

/!
N\exp(-1.41,/<f,>)
102 b exp(-3.5f/<f>)

0 1 2 3

0.5

0.2

10.1

10.05

0.02

0.01

3B) 4

3 exp(—3.8ft/5ft>) exp(-1.6f,/<f,>)

1 2 3
f

0.5

0.2

10.1

10.05

44
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Comparison with simulations

Cavity method P. Wang et al. Physica A (2010)

0.5 3
I0.2

10.1

10.05

1
0.02
0.01 0 -

45
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Solution-no solution transition at Z.

0(Q7) = 3 Y =R(:) [ (i) [T ai,pQ Q@ )6[Q " —F. ({Q 7))

\ Q (Y

'\ | Initial fields

o N

0 0.5 1 1.5 2 25 3 3.5 4

f

Q(f,)

200

150

100

50

0

2D frictionless
(z=39<z.")

nos

Peaks=

|
I
I
J
J

e

|

|

|

1] l!
P
Vo
'
I

1

;olution'

2D frictionless ‘
7=4.5>7") |

~ Broad=
 solution

z < ze(p)

order parameter:
WIDTH

ot |

A AR b

= 10 \\\ _________________
107 by R

_ 7=41 —
data discretization -------

2D frictionless

10° 10' 10°
Time Steps
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Comparison with simulations

Cavity method Silbert et al. PRE (2002)

) 0.86 TR R 4

0849 © 00 ¢ \
3.8 | .E ZC(,M')
36 o 0.82 N
| (bC e 4 I —— 0 [ 3
3.4 | 0.80 fe 3 k, o
2z | N 078 | o oo om g
310‘4 107 1072 107 10° 10° 0‘7?0-4 10-3 10-2 10-1 100 1012

w
U

Consistent with interpretation of z.(/4) as a lower bound
47
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Definition of jammed state:
Isostatic condition on Z

Z = geometrical coordination number.

Determined by the geometry of
the packing.

/< z2<2d=6

Z=mechanica| coordination number.

Determined by force/torque balance.

4—d—|—1<Z<2d—6

[ =

0 —
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Generalizing the theory of monodisperse sphere packings

Theory of monodisperse spheres

< —~

spheres Non-spherical objects

(dimers, triangles, tetrahedrons,
spherocylinders, ellipses, ellipsoids ... )

Polydisperse (binar

QO

Distribution of radius P(r) €l Distribution of angles P( 5)
Extra degree of freedom

Onsager 1949
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Result of binary packings
Binary packings

2 0o
, Tr * ' rx
W = 3 E ;1:,-,/0 ¢ exp E [—p‘,-’j(z, x)S;;(c) —pj(W)l",-j(c)] dc
i=1

J
RCP (Z = 6)
i 0.65
066 1.3 i3 7
A » l4 y ;5;,1";-4_6"..
. 3 }‘\\X ,%’uﬁff““"f
A 1.7 \ 0.60} ’ ""'{’“"r'-,'la
0.65 b\ .
< & k S
0.55
0.64 ot

00 02 04 06 08 1.0
T

Danisch, Jin, Makse, PRE (2010)
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The partition function for hard spheres

Volume Ensemble + Force Ensemble

1. The Volume Function: W (geometry)

/

Z(X):'/exp[ W)(;*')} J;m (#,7) Dz DF
|

2. Definition of jammed state:
force and torque balance

Solution under different degrees of approximations
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(a) f(t) )
Signal Sloane

o“‘:(i = \h\wmv Most efficient design of signals
2w (Information theory)
(b)
l e Sampling theorem
(c)
(f(O).f(-;—w),f(-zva). f(gw*)) Optimal packing

(Sphere packing problem)

High-dimensional point

Minkowsky lower bound: 4 ~ 9-4
Kabatiansky-Levenshtein upper bound: ¢ ~

Question: what’s the density of RCP in high dimensions?

Conjecture: are disordered packings more optimal than ordered ones?
Wednesday, July 17, 13

Rigorous bounds
2—().5990... d




Sphere packings in high dimensions

Sloane
(a) f(t) Signal
04}, i Most efficient design of signals
= (Information theory)
(b)
: IHIIJITII‘ I — Sampling theorem

et (5)) Optimal packing

(Sphere packing problem)

High-dimensional point

Rigorous bounds Minkowsky lower bound: & ~ ‘2_“’

Kabatiansky-Levenshtein upper bound: , - 9-0.5990...d

Question: what's the density of RCP in high dimensions?
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Determination of a lower bound on
average coordlnatlon number z™"(u)
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