Nicolás Rivas (<u>n.a.rivas@ctw.utwente.nl</u>) Physics of glassy and granular materials Kyoto, Japan, July 2013

Low-frequency oscillations and convective phenomena in a density-inverted vibrofluidised granular system

S. Luding, A.R. Thornton, C.R.K. Windows-Yule, D.J. Parker, N. Rivas

MOTIVATION

8 When/how do granular materials flow?

- Biscrete to continuum transition
- 8 Collective dynamics of many-particle systems

control parameter $S \equiv A^2 \omega^2/gd \in (20,400)$

SIMULATIONS

- 8 Event-driven algorithm
- 8 Perfect hard spheres
- Sollisions modeled by M_N , M_T and μ_S , μ_D ,
- Solid walls boundary conditions (no top)
- 8 Bi-parabolic sine interpolation

PHASES

PHASES

PHASES

+ 5*d* +

LFO's MODEL

Cauchy's equations

Forced harmonic oscillator

$$D_t \tilde{\rho} + \rho (\nabla \cdot \vec{\tilde{u}}) = 0,$$

$$D_t (\rho \vec{\tilde{u}}) = \nabla \cdot \tilde{\sigma} + \rho \vec{B},$$

$$\vec{\xi} + \omega_{0_m}^2 \xi = \frac{1}{m_s} A_{f_m} \cos(\omega_{f_m} t) + C,$$

$$\omega_{0_m}^2 = \frac{g \rho_g}{m_s}$$

LFO's MODEL

Cauchy's equations

Forced harmonic oscillator

LFO's MODEL

EXPERIMENTS

We use PEPT (Positron Emission Particle Tracking) to track ONE particle

Submilimeter, milisecond resolutions

EXPERIMENTS

- Red = Simulations
- Blue = Experiments

EXPERIMENTS

Observed convection phenomena

Inverse convective state

Observed convection phenomena

"Crystalline convection"

Conclusions

Sector Vertically driven granular matter in density inverted states present low-frequency oscillations (LFOs).

A forced oscillator model, obtained from considering a two phases continuum medium, agrees with simulation and experimental measurements.

LFO's

Prospective work

Expand the model:

Consider energy equation

Solve full non-linear equation

Study relevance of LFOs in wider systems

Back to Wide Geometry

$$L_{X} = 50d$$

 $N = 3000$

- Black particles are heavy
- White particles are light

Mass ratio = 3

Same size

Phase-Coexisting Patterns with Segregation in Vertically Vibrated Binary Granular Mixtures I.H. Ansari, N. Rivas and M. Alam

Undulations + Gas

- Black particles are heavy
- White particles are light

Mass ratio = 3

- Black particles are heavy
- White particles are light
 - Mass ratio = 3

Conclusions

Known phases can coexist in the vertical vibrated narrow box geometry, when mass binary mixtures are considered.

Segregation occurs in most cases, although mixed states are also observed.