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Statistical mechanical expression for the shear modulus

Solid: elastic response to a shear deformation

Max Born (1939):
“The difference between a solid and a
liquid is that the solid has elastic
resistance to a shearing stress while a
liquid does not.”

non-zero shear modulus µ:

µ =
F/A
∆x/I



Statistical mechanical expression for the shear modulus

Free energy of a deformed system
Consider an N-particle system in a box of volume V; particles interact via
potential V(r). The non-trivial part of the free energy of this system is

F = −kBT ln
∫

V

d~r1...d~rN

VN exp

(
− 1

kBT

∑
i<j

V(rij)

)
.

Now, let’s deform the box with shear strain γ. Then, one would integrate over
a deformed volume,

F(γ) = −kBT ln
∫

V′

d~r1...d~rN

VN exp

(
− 1

kBT

∑
i<j

V(rij)

)
.

Mathematically, one can change the variables x′ = x− γy; y′ = y; z′ = z and
then one integrates over the undeformed box:

F(γ) = −kBT ln
∫

V

d~r′1...d~r
′
N

VN exp

(
− 1

kBT

∑
i<j

V
(√

(x′ij + γy′ij)2 + y2
ij + z2

ij

))
.

Note: the shear strain γ appears now in the argument of V.



Statistical mechanical expression for the shear modulus

General formula for shear modulus
Expanding the free energy in the shear strain one gets:

F(γ) = F(0) + Nσγ +
1
2

Nµγ2 + ...

σ - shear stress µ - shear modulus

µ =
1
N

〈∑
i<j

y2
ij
∂2V(rij)
∂x2

ij

〉
− 1

kBT

〈(∑
i<j

yij
∂V(rij)
∂xij

)2〉
−

〈∑
i<j

yij
∂V(rij)
∂xij

〉2


Squire, Holt and Hoover, Physica 42, 388 (1969)

1
N

〈∑
i<j

y2
ij
∂2V(rij)
∂x2

ij

〉
← the Born term

1
N

〈(∑
i<j

yij
∂V(rij)
∂xij

)2〉
−

〈∑
i<j

yij
∂V(rij)
∂xij

〉2
 ≡ N

(〈
σ2〉− 〈σ〉2)←

stress fluctuations
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∂x2
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kBT

〈(∑
i<j

yij
∂V(rij)
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−
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In the thermodynamic limit the free energy density is
shape-independent:

lim
∞

F(0)
N

= lim
∞

F(γ)
N

However, the shear modulus is finite: lim
∞

N−1 ∂
2F(γ)
∂γ2

∣∣∣∣
γ=0
6= 0
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This formula is applicable to both crystals and glasses.
Can also be evaluated for fluids; computer simulations showed that for
fluids this formula gives µ = 0 (as it should).
It can be proved that for systems with short range interactions, the above
formula gives µ = 0 unless there are long-range density correlations

(Bavaud et al., J. Stat. Phys. 42, 621 (1986)).
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The above formula was a starting point of a calculation of glass shear
modulus by H. Yoshino and M. Mezard (PRL 105, 015504 (2010)); see
also H. Yoshino, JCP 136, 214108 (2012).

Goal: investigate the existence of long range density correlations and
derive an alternative formula for the shear modulus.



Emergence of rigidity: crystals Goldstone modes and long-range correlations

Broken translational symmetry
In crystalline solids translational symmetry is broken

The average density n(~r) is a periodic function of ~r:

n(~r) =
∑
~G

n~Gei~G·~r

where ~G are reciprocal lattice vectors.

Rigid translation: an equivalent but different state

By translating a crystal by a constant vector ~a we get an equivalent but
different state of the crystal. This does not cost any energy/does not require
any force.

Under such translation the density field changes:

n(~r)→ n(~r −~a) ≡ n~G → n~Gei~G·~a for ~G 6= ~0

Rigid translations ≡ zero free energy cost excitations (Goldstone modes)

The existence of such zero-free energy excitations is the reflection of a
broken translational symmetry.



Emergence of rigidity: crystals Goldstone modes and long-range correlations

Long-range correlations

Density fluctuations for wavevectors close to ~G diverge

n(~k + ~G) =
∑

i

e−i(~k+~G)·~ri ; δn(~k + ~G) = n(~k + ~G)−
〈

n(~k + ~G)
〉

Bogoliubov inequality
〈
|A|2
〉 〈
|B|2
〉
≥ | 〈AB〉 |2 =⇒

1
V

〈
|δn(~k + ~G)|2

〉
≥ 1

k2

(kBT)2 |n~G|
2
(
~̂n · ~G

)2

lim~k→0
1
V

〈
|~̂k· ↔σ (~k) · ~̂n|2

〉
↔
σ (~k) - microscopic stress tensor ~̂n - an arbitrary unit vector

Small wavevector divergence⇒ long-range correlations in direct space.



Emergence of rigidity: crystals Goldstone modes and long-range correlations

Displacement field and its long-range correlations
Slowly varying deformation

Infinitesimal uniform translation: n(~r)→ n(~r)−~a · ∂~rn(~r)

Infinitesimal deformation with a slowly varying ~a(~r): n(~r)→ n(~r)−~a(~r) · ∂~rn(~r)

Microscopic expression for the displacement field

~u(~k) = − 1
N

∫
d~re−i~k·~r ∂n(~r)

∂~r

∑
i

δ(~r −~ri)︸ ︷︷ ︸
microscopic density

N =
1

3V

∫
d~r
(
∂n(~r)
∂~r

)2

If δn(~r) = −~a(~r) · ∂~rn(~r), then
〈
~u(~k)

〉
= ~a(~k).

Long-range correlations of the displacement field

Bogoliubov inequality =⇒ 1
V

〈
|~̂n ·~u(~k)|2

〉
≥ 1

k2

(kBT)2

lim~k→0
1
V

〈
|~̂k· ↔σ (~k) · ~̂n|2

〉
This can be used to show that ~u(~k; t) is a slow (hydrodynamic) mode

→ G. Szamel & M. Ernst, Phys. Rev. B 48, 112 (1993).



Emergence of rigidity: crystals Shear modulus

Macroscopic force balance equation

Macroscopic force balance equation

In the long wavelength (k→ 0) limit we have the following relation between a
transverse displacement ~a = ax(ky)~̂ex and the external force (per unit volume)
needed to maintain this displacement:

~F = Fx(ky)~̂ex = λxxyyax(ky)kyky~̂ex λxxyy ≡ µ← shear modulus



Emergence of rigidity: crystals Shear modulus

Microscopic force balance equation
Transverse non-uniform displacement

Infinitesimal transverse deformation with a slowly varying ~a(~r) = ~a(~k)ei~k·~r:

n(~r)→ n(~r)−~a(~r) · ∂~rn(~r) = n(~r)−~a(~k)ei~k·~r · ∂~rn(~r), ~a ⊥ ~k

External force needed to maintain deformed density profile

External potential needed to maintain the density profile change:∫
d~r2

(
δVext(~r1)
δn(~r2)

)[
−~a(~k)ei~k·~r2 · ∂~r2 n(~r2)

]
External force on the system (per unit volume):

~F(~k) = − 1
V

∫
d~r1e−i~k·~r1 n(~r1)∂~r1

∫
d~r2

(
δVext(~r1)
δn(~r2)

)
[−∂~r2 n(~r2)] ·~a(~k)ei~k·~r2

= − 1
V

∫
d~r1d~r2e−i~k·~r1 (∂~r1 n(~r1))

(
δVext(~r1)
δn(~r2)

)
[∂~r2 n(~r2)] ·~a(~k)ei~k·~r2



Emergence of rigidity: crystals Shear modulus

Microscopic force balance equation→ shear modulus
Shear modulus
External force on the system (per unit volume):

~F(~k) = − 1
V

∫
d~r1d~r2e−i~k·~r1 (∂~r1 n(~r1))

(
δVext(~r1)
δn(~r2)

)
[∂~r2 n(~r2)] ·~a(~k)ei~k·~r2

Long wavelength (k→ 0) limit:

~F = Fx(ky)~̂ex = 0︸︷︷︸
no force needed to shift rigidly

+ 0︸︷︷︸
symmetry

+ µax(ky)kyky~̂ex + ...

Comparison with macroscopic force balance equation allows us to identify
shear modulus:

µ = −kBT
2V

∫
d~r1

∫
d~r2 (y12)2 (∂~r1 n(~r1))

(
δ(−βVext(~r1))

δn(~r2)

)
(∂~r2 n(~r2))

=
kBT
2V

∫
d~r1

∫
d~r2 (y12)2 (∂x1 n(~r1)) ccr(~r1,~r2) (∂x2 n(~r2))

ccr(~r1,~r2) - direct correlation function of the crystal



Emergence of rigidity: crystals Shear modulus

Shear modulus

µ =
1
N

〈∑
i<j

y2
ij
∂2V(rij)
∂x2

ij

〉
− 1

kBT

〈(∑
i<j

yij
∂V(rij)
∂xij

)2〉
−

〈∑
i<j

yij
∂V(rij)
∂xij

〉2


Squire, Holt and Hoover, Physica 42, 388 (1969)

µ =
kBT
2V

∫
d~r1

∫
d~r2 (y12)2 (∂x1 n(~r1)) ccr(~r1,~r2) (∂x2 n(~r2))

ccr(~r1,~r2) - direct correlation function of the crystal

G. Szamel & M. Ernst, Phys. Rev. B 48, 112 (1993).



Replica approach

Static description of a glass: replica approach
How to “construct” a glass

Franz and Parisi (PRL 79, 2486 (1997)):

An N-particle system ~r1, ...,~rN coupled to a quenched configuration ~r 0
1, ...,~r

0
N :

attractive potential = −ε
∑

i,j

w(|~ri −~r 0
j |).

For low enough temperature or high enough density/volume fraction, as ε→ 0
the system may remain trapped in a metastable state correlated with the
quenched configuration =⇒ dynamic glass transition.

It is convenient to average over quenched configurations: replicas

Averaging over a distribution of quenched configurations
=⇒ r replicas of the system & r → 0 (or m = r + 1

↑
quenched conf.

& m→ 1).

System correlated with the quenched configuration
=⇒ non-trivial correlations between different replicas.

Appearance of non-trivial inter-replica correlations
=⇒ dynamic glass transition (identified with the mode-coupling transition).



Replica approach

OZ equations: a way to implement replica approach
Pair correlation functions: m replicas

hαβ(r): pair correlation function involving particles in replicas α and β

Ornstein-Zernicke (OZ) equations known from equilibrium stat. mech.

hαβ(~r1,~r2) = cαβ(~r1,~r2) + n
∑
γ

∫
d~r3cαγ(~r1,~r3)hγβ(~r3,~r2)

cαβ : direct correlation function

Replica symmetry: hαα = h & cαα = c for α 6= β: hαβ = h̃ & cαβ = c̃

m→ 1 limit

h(~r1,~r2) = c(~r1,~r2) + n
∫

d~r3c(~r1,~r3)h(~r3,~r2) standard OZ equation∫
d~r3(δ(r13)− nc(~r1,~r3))h̃(~r3,~r2) = c̃(~r1,~r2)

+n
∫

d~r3c̃(~r1,~r3)h(~r3,~r2)− n
∫

d~r3c̃(~r1,~r3)h̃(~r3,~r2)

Additional relations (closure relations) between h’s and c’s needed!



Emergence of rigidity: glasses Goldstone modes & long-range correlations

Symmetry transformation hidden in replica approach
Glass can be moved as a rigid body

Imagine repeating the Franz-Parisi construction with a rigidly shifted system,
~ri → ~ri +~a (with the quenched configuration kept in its original position):

attractive potential = −ε
∑

i,j

w(|~ri −~r 0
j −~a|);

As before: ε→ 0, metastable state =⇒ replica off-diagonal correlations.

Physically, nothing changes: we get a glass that is shifted rigidly by ~a.

However: (some) replica off-diagonal correlation functions change.

For α > 0 : hα0(~r1,~r2)→ hα0(~r1 −~a,~r2)

All other pair correlations are unchanged (note: this breaks replica symmetry).

Rigid translations ≡ zero energy cost excitations (Goldstone modes)

The transformation hα0(~r1,~r2)→ hα0(~r1 −~a,~r2); cα0(~r1,~r2)→ cα0(~r1 −~a,~r2)
leaves Ornstein-Zernicke equations unchanged.

Its existence is the reflection of a broken translational symmetry.



Emergence of rigidity: glasses Goldstone modes & long-range correlations

Displacement field

Slowly varying deformation

Infinitesimal uniform translation: hα0(~r1,~r2)→ hα0(~r1,~r2)−~a · ∂~r1 hα0(~r1,~r2)

Infinitesimal deformation with a slowly varying ~a(~r1):

hα0(~r1,~r2)→ hα0(~r1,~r2)−~a(~r1) · ∂~r1 hα0(~r1,~r2)

Displacement field

~u(~k) = − 1
N

∫
d~r1e−i~k·~r1

∫
d~r21

∂hα0(~r1,~r2)
∂~r1

∑
i,j

δ(~r1 −~r αi )δ(~r2 −~r 0
j )︸ ︷︷ ︸

microscopic two-replica density

N =
1
3

∫
d~r21

(
∂hα0(~r1,~r2)

∂~r1

)2

If δhα0(~r1,~r2) = −~a(~r1) · ∂~r1 hα0(~r1,~r2) then
〈
~u(~k)

〉
= ~a(~k).



Emergence of rigidity: glasses Goldstone modes & long-range correlations

Long-range correlations

Long-range correlations of the displacement field

Bogoliubov inequality =⇒
1
V

〈
|~̂n ·~uα(~k)|2

〉
≥ 1

k2

(kBT)2

lim~k→0
1
V

〈
|~̂k· ↔σα (~k) · ~̂n|2

〉
where ~̂n is an arbitrary unit vector and

↔
σα is the (microscopic) stress tensor in

replica α.
Note: This is identical to the inequality derived for crystalline solids.

Long-range density correlations

1
V

〈
|~̂n ·~uα(~k)|2

〉
=

1
VN 2

∫
d~r1...d~r4~̂n ·

∂hα0(~r1,~r2)
∂~r21

~̂n · ∂hα0(~r3,~r4)
∂~r43

nα0,α0(~r1,~r2,~r3,~r4)e−i~k·~r13

Replica off-diagonal four-point correlation function nα0,α0 is long-ranged.



Emergence of rigidity: glasses Shear modulus

Macroscopic force balance equation

Macroscopic force balance equation

For an isotropic solid, in the long wavelength (k→ 0) limit we have the
following relation between a transverse displacement ~a = ax(ky)~̂ex and the
external force (per unit volume) needed to maintain this displacement:

~F = Fx(ky)~̂ex = λxxyyax(ky)kyky~̂ex λxxyy ≡ µ← shear modulus



Emergence of rigidity: glasses Shear modulus

Microscopic force balance equation

Transverse displacement ~a(~r)→ change of inter-replica correlations

Infinitesimal deformation with a slowly varying ~a(~r1):

hα0(~r1,~r2)→ hα0(~r1,~r2)−~a(~r1) · ∂~r1 hα0(~r1,~r2)

Inter-replica force needed to maintain these correlations

Inter-replica potential needed to maintain these correlations:∑
β>0

∫
d~r3d~r4

(
δVα0(~r1,~r2)
δhβ0(~r3,~r4)

)
n

[−~a(~r3) · ∂~r3 hβ0(r34)]

Force (per unit volume) on replica α:

~Fα(~k)=−n2

V

∫
d~r1...d~r4e−i~k·~r13 (∂~r1 hα0(r12))

∑
β

(
δVα0(~r1,~r2)
δhβ0(~r3,~r4)

)
n

(∂~r3 hβ0(r34)) ·~a(~k)



Emergence of rigidity: glasses Shear modulus

Microscopic force balance equation→ shear modulus
Shear modulus
Force (per unit volume) on replica α:

~Fα(~k)=−n2

V

∫
d~r1...d~r4e−i~k·~r13 (∂~r1 hα0(r12))

∑
β

(
δVα0(~r1,~r2)
δhβ0(~r3,~r4)

)
n

(∂~r3 hβ0(r34)) ·~a(~k)

Long wavelength (k→ 0) limit:

~F = Fx(ky)~̂ex = 0︸︷︷︸
no force needed to shift rigidly

+ 0︸︷︷︸
symmetry

+ µax(ky)kyky~̂ex + ...

Comparison with macroscopic force balance equation allows us to identify
shear modulus:

µ = −n2kBT
2V

∫
d~r1...

∫
d~r4 (y13)2

(
∂h10(~r1,~r2)

∂x1

)

×
((

δ(−βV10(~r1,~r2))
δh10(~r3,~r4)

)
n
−
(
δ(−βV10(~r1,~r2))
δh20(~r3,~r4)

)
n

)(
∂h10(~r3,~r4)

∂x3

)



Emergence of rigidity: glasses Numerical results

Shear modulus: numerical results
Needed: a theory to calculate replicated correlation functions

Cardenas, Franz and Parisi (JCP 110, 1726 (1999)) used replicated
hyper-netted chain (HNC) integral equation approach (a.k.a. HNC closure).

For hard-sphere interaction replica off-diagonal correlation functions h̃ appear
discontinuously at the dynamic transition φd = 0.619.

Non-ergodicity parameter f (q)

replica approach: f (q) =
nh̃(q)
S(q)

mode-coupling theory:

lim
t→∞

F(q; t)/S(q) = f (q)

F(q; t): intermediate scattering function
S(q): static structure factor

Comparison with simulations
=⇒ f (q) is too small.
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Emergence of rigidity: glasses Numerical results

An alternative closure (G. Szamel, Europhys. Lett. 91, 56004 (2010))

Metastable state ≡ state with vanishing currents

pair distribution: nαβ = n2(hαβ + 1) Brownian Dynamics, D0 = 1, kBT = 1

0 = ∂tnαβ(~r1,~r2; t) = −∂~r1 ·~jα,β(~r1,~r2; t)− ∂~r2 ·~jβ,α(~r2,~r1; t)

Assumption: currents vanish (α 6= β) =⇒

0 =~jα,β(~r1,~r3) = −∂~r1 nαβ(~r1,~r3) +
∫

d~r2~F(~r12)nααβ(~r1,~r2,~r3)

0 =~jβ,αα(~r1,~r2,~r3) = −∂~r3 nααβ(~r1,~r2,~r3) +
∫

d~r4~F(~r34)nααββ(~r1,~r2,~r3,~r4)

∂~r1∂~r3 n2h̃(~r1,~r3) ≡ ∂~r1∂~r3 nαβ(~r1,~r3) =
∫

d~r2~F(~r12)
∫

d~r4~F(~r34)nααββ(~r1,~r2,~r3,~r4)

nirr
ααββ - one-particle irreducible part of nααββ :

∂~r1∂~r3 n2c̃(~r1,~r3) =
∫

d~r2~F(~r12)
∫

d~r4~F(~r34)nirr
ααββ(~r1,~r2,~r3,~r4)



Emergence of rigidity: glasses Numerical results

Equation for the non-ergodicity parameter
Closure: expressing c̃ in terms of h̃ = S(q)f (q)/n

A factorization approximation for nirr
ααββ inspired by an earlier analysis of

similar equilibrium correlations results in the following equation for c̃:

c̃(q) =
1

2q2

∫
d~q1d~q2

(2π)3 δ(~q−~q1−~q2)
(
~̂q · [~q1c(q1) +~q2c(q2)]

)2
S(q1)S(q2)f (q1)f (q2)

Self-consistent equation for non-ergodicity parameter f (q)

Using this closure in the replica off-diagonal OZ equation gives an equation
for f (q) identical to that derived using mode-coupling theory:

f (q)
1− f (q)

=
nS(q)
2q2

∫
d~q1d~q2

(2π)3 δ(~q−~q1 −~q2)
(
~̂q · [~q1c(q1) +~q2c(q2)]

)2

×S(q1)S(q2)f (q1)f (q2)

Mode-coupling theory’s equation for f (q) is re-derived using a static approach.

This version of replica approach is consistent with mode-coupling theory.



Emergence of rigidity: glasses Numerical results

Shear modulus: numerical results

Needed: a theory to calculate
(
δ(−βV10(~r1,~r2))
δh10(~r3,~r4)

)
n

and
(
δ(−βV10(~r1,~r2))
δh20(~r3,~r4)

)
n

An approximate relation between replica off-diagonal potentials and the
change of the direct correlation functions:

n2δcα0(~r1,~r2) = −nα0(~r1,~r2)βVα0(~r1,~r2)

Direct correlation functions can be expressed in terms of replica
off-diagonal correlations through Ornstein-Zernicke equations.



Emergence of rigidity: glasses Numerical results

Shear modulus: numerical results

Results - shear modulus

0.514 0.516 0.518 0.52

φ
0

20

40

60

80

100

µ 
σ3 /k

B
T

Hard sphere potential; static structure
calculated using Percus-Yevick structure factor.

Discontinuous appearance of the shear
modulus at the dynamic glass transition.

G. Szamel & E. Flenner, PRL 107, 105505 (2011)



Summary

Summary

Crystalline solid: broken translational symmetry
=⇒ Goldstone modes, long-range correlations & elasticity

An alternative expression for the shear modulus

Glassy (amorphous) solid:

randomly broken translational symmetry
=⇒ Goldstone modes, long-range correlations & elasticity

An alternative expression for the shear modulus of glasses

Discontinuous appearance of the shear modulus at the dynamic glass
transition



Origin of rigidity in solids:
broken translational symmetry

Crystals
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