Mixing shear and dilation in marginal solids

Brian Tighe
with René Pecnik
and Ana Martin Calvo

TU Delft
Mixing shear and dilation...

I. Dilation induced by shear

II. Tuning shear compliance with pre-tension
Mixing shear and dilation...

I. Dilation induced by shear

II. Tuning shear compliance with pre-tension
Counterintuitive dilatancy

O. Reynolds 1885
Weaire & Hutzler, Phil. Mag. 2003
Conti & MacKintosh PRL 2008

Packings expand, networks contract: Why the difference?

packings:
system expands
or pressure increases

networks:
system contracts
or pressure decreases
Dilatancy enhanced near jamming

Ren, Dijksman & Behringer
PRL 2013
A nonlinear effect

\[\epsilon = \frac{1}{2} R_p \gamma^2 + \ldots \]

symmetry:

\[R_p = \left(\frac{\partial^2 \epsilon}{\partial \gamma^2} \right)_\gamma \]

normal stress \(p_0 \)

Reynolds dilatancy coefficient

Ren, Dijksman & Behringer, PRL 2013
Weaire & Hutzler, Phil. Mag. 2003
Reynolds coefficient

assume a hyperelastic solid:

energy \[dU = -p \, dV - \sigma V \, d\gamma \]

“enthalpy” \[dH = V \, dp - \sigma V \, d\gamma \]

Maxwell \[\left(\frac{\partial V}{\partial \gamma} \right)_p = - \left(\frac{\partial \sigma V}{\partial p} \right)_\gamma \]

expression for \(R_p \)

Weaire & Hutzler, Phil. Mag. 2003
BPT, Gran. Matt. 2013
Reynolds coefficient

\[R_p = \left(\frac{\partial G}{\partial p} \right)_\gamma - \frac{G}{E} \]

shear modulus \(G > 0 \)
Young’s modulus \(E > 0 \)
typically \(E > G \)

Weaire & Hutzler, Phil. Mag. 2003
BPT, Gran. Matt. 2013
Reynolds coefficient

\[R_p = \left(\frac{\partial G}{\partial p} \right) \gamma - \frac{G}{E} \]

Shear modulus \(G > 0 \)
Young's modulus \(E > 0 \)
Typically \(E > G \)

Magnitude \(\gg 1 \) in marginal solids

Does compression stiffen or soften the shear modulus?

Weaire & Hutzler, Phil. Mag. 2003
BPT, Gran. Matt. 2013
Soft spheres

\[R_p \approx \left(\frac{\partial G}{\partial p} \right)^\gamma \]

\[G \sim p^{1/2} \quad \text{(Hookean)} \]

\[R_p \sim \frac{1}{p^{1/2}} > 0 \]

O’Hern, Silbert, Liu & Nagel, PRE 2003

BPT, Gran. Matt. 2013
Packings expand: verified in model foams

1. Physical intuition?
2. What about networks?

Weaire & Hutzler, Phil. Mag. 2003
Mixing shear and dilation...

I. Dilation induced by shear

II. Tuning shear compliance with pre-tension
Tuning with tension

\[k_{\text{eff}} \sim p \]

unloaded state = floppy = tunable!
Networks

z < z_c
floppy

z > z_c
rigid

coordination
Networks

- \(z < z_c \) with coordination ON
- \(z > z_c \) with coordination OFF

Tension vs. Probability

- \(p = 0 \)
- \(p = 10^{-3} \)
- \(p = 10^{-1} \)

Color Scale: \(f/f_{\text{max}} \)
Manipulating marginal matter

Brown et al, PNAS 2010

un jammed = OFF

jammed = ON

jamming transition as a switch
Rigidity induced by tension

$z < z_c$

$p = 0$

$p = 10^{-3}$

$p = 10^{-1}$

jamming transition as a **switch**

...or a **knob**

measure G
Shear modulus

\(G(p, z) \)

\[
\frac{G(p, z)}{|z - z_c|^{\mu}} = g \left(\frac{p}{|z - z_c|^{\lambda}} \right)
\]
Critical scaling

\[G \sim |\Delta z|^\mu \]

\(\mu = 1.1 \quad \lambda = 2.1 \)

Wyart, Liang, Kabla & Mahadevan, PRL 2008
Ellenbroek, Zeravcic & Van Hecke, EPL 2009
Zaccone & Scossa-Romano, PRB 2011
Broedersz, Mao, Lubensky & MacKintosh Nat. Mat. 2011
Tighe, PRL 2012
Critical scaling

\[G \sim p^{\mu/\lambda} \]

\[\mu = 1.1 \quad \lambda = 2.1 \]
Critical scaling

\[\frac{G}{|\Delta z|^{\mu}} \sim \frac{p}{|\Delta z|^{\lambda-\mu}} \]

\[\mu = 1.1 \quad \lambda = 2.1 \]
Critical scaling

$G / |\Delta z|^\mu$

$\mu = 1.1 \quad \lambda = 2.1$

$p / |\Delta z|^\lambda$

$0.01 \quad 0.1 \quad 1 \quad 10 \quad 100$
reversible tuning with tension
diverging susceptibility

only rigid under tension
\(G \sim p/\Delta z \)

critical regime
\(G \sim p^{1/2} \)

“classical” jammed solid
\(G \sim \Delta z \)

excess coordination \(\Delta z = z - z_c \)
Spectra

tension

\[z < z_c \]

Density of States (DOS)

frequency \(\omega \)

Spectra

Density of States (DOS)

zero tension

z < z_c

area $\sim |\Delta z|$

finite frequency modes

density gap: Düring et al, Soft Matter 2012
Density of States (DOS)

$\text{area} \sim |\Delta z|$

finite frequency modes

$\sqrt{k_{\text{eff}}} \sim \sqrt{p}$

ω

$z < z_c$

tension

Spectra

Spectra

\[p = 10^{-3} \]

\[z \rightarrow z_c \]

DOS vs. frequency \(\omega \)
Spectra

\[z = 3.5 \]

\begin{align*}
\text{DOS} & \quad \text{frequency } \omega \\
\text{pressure} & \quad \text{pressure}
\end{align*}
Simple scaling argument

\[
\frac{1}{G} \sim \frac{1}{N} \sum_n \frac{1}{\omega_n^2}
\]

modulus \leftrightarrow modes

\[G \sim \frac{p}{|\Delta z|} \text{ w/ high susceptibility} \quad \frac{\partial G}{\partial p} \sim \frac{1}{|\Delta z|} \]
Critical scaling

upper branch:

\[G = G_0 \Delta z \sqrt{1 + c p / \Delta z^2} \]
Critical scaling

\[
\frac{(G - G_{p \to 0})}{\Delta z^\mu} = \frac{p}{|\Delta z|^\lambda}
\]
Network dilatancy

\[R_p \simeq \left(\frac{\partial G}{\partial p} \right) \gamma \]

\[G \propto \Delta z \sqrt{1 - \text{const} \cdot \frac{p}{\Delta z^2}} \]

\[R_p \sim -\frac{1}{G} < 0 \]
Network dilatancy

constant normal stress: \(R_p \sim 1/G \)

constant volume: \(R_V \sim \text{const} \)

finite size effect: Goodrich, Dagois-Bohy et al. (in prep)
Intuiting dilatancy near jamming

$R_p \sim \frac{\partial G}{\partial p} < 0$

networks contract

$R_p \sim \frac{\partial G}{\partial p} > 0$

packings expand
Relating networks and packings

![Graph showing the relationship between connectivity z and effective volume fraction ϕ.]

Katgert & Van Hecke, EPL 2010

$$G \propto \Delta z \sqrt{1 - \text{const} \cdot \frac{p}{\Delta z^2}}$$

Stability: $G > 0$

$$\Delta z \geq \text{const} \cdot p^{1/2}$$

cf. Wyart et al, PRE 2005

Higher pressure = more contacts

$$G \sim p^{1/2}$$
Dilatancy and strain stiffening

\[G(z, p, \gamma) = G_0(z, p) f(\gamma / \gamma^*) \]

Ansatz:

- \(\epsilon = R \gamma^2 / 2 \)
- \(\gamma^* = 2 / R \)
Dilatancy and strain stiffening

\[\frac{G}{G_0(\Delta z, p)} \]

\[p = 10^{-3} \ldots 10^{-1} \]
\[\Delta z = 0.01 \ldots 0.5 \]
\[\nu = 1.1 \]

linear response

strain stiffening

cf Wyart et al., PRL 2008
Nonlinear bulk modulus

\[\mu = 1.1 \quad \lambda = 2.1 \]

\[K_{\text{app}} \equiv \frac{p}{\epsilon} \]

\[K_{\text{app}} / |\Delta z|^{\mu} \]

\[p / |\Delta z|^{\lambda} \]

c.f. Sheinman, Broedersz, MacKintosh, PRE 2012

Wyart, Liang, Kabla, Mahadevan, PRL 2008
packings expand / networks contract

tunable shear modulus

enhanced near jamming

PhD and Postdoc positions available