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The System: Inelastic hard spheres

Analogously, we have microscopic/macroscopic time scales: collision time (τ), and 
characteristic time variation of mean fields (T).

http://www.falstad.com/gas/Typical variation distance for mean !elds (L)

Mean free path ( )
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Does inelasticity alone prevents the existence of a hydrodynamic 
solution?

The Problem

∂T

∂t
= −ζT For a homogeneous system, energy balance tells us that granular temperature 

decreases in time according to inelasticity.

Kn =
λ

L
=

τ

T
� 1
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Classes of hydrodynamic steady laminar flows
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A stable laminar 
steady flow is 
always possible!
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Classes of hydrodynamic steady laminar flows

Gas type Flow class

elastic,
granular < 0 < 0 XTu 

(classic Couette)

granular = 0 < 0 LTu

granular = 0 = 0 USF
(LTu)

granular > 0 < 0 CTu/XTy

granular > 0 = 0 LTy

granular > 0 > 0 CTy

−γ(α, a) Φ(α, a)

viscous heating predominates

viscous heating
=

inelastic cooling

inelastic cooling predominates
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Relaxation times to hydrodynamic steady state
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There is always relaxation to a hydrodynamic steady state in forced 
granular gases

Couette flow Stochastic volume forces
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The kinetic equation for homogeneous state

Boltzmann equation for inelastic rough hard spheres

∂tf(v,w; t) = J [v,w|f ]

Collisional rules

c�1 = c1 −∆∗
12, c�2 = c2 +∆∗

12,

w�
1 = w1 −

1√
κθ

�σ ×∆∗
12, w�

2 = w2 −
1√
κθ

�σ ×∆∗
12

∆∗
12 = �α (c12 · �σ) �σ + �β

�
c12 − (c12 · �σ) �σ −

�
θ

κ
�σ × (w1 +w2)

�
.

with

c ≡ v − u�
2Tt/m

, w ≡ ω�
2Tr/I

,

�α =
1 + α

2
�β =

κ

1 + κ

1 + α

2

J [v|f, f ] , collisional operator, depends on coefficients of restitution α, β
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The kinetic equation for homogeneous state

Reduced distribution function

φ(c,w) ≡ 1

n

�
4TtTr

mI

�3/2

f(v,ω).

Kinetic equation for the reduced distribution functions

∂sφ+
µ20

3

∂

∂c
· (cφ) + µ02

3

∂

∂w
· (wφ) = J∗[c,w|φ],

µpq = −
�

dc

�
dw cpwqJ∗[c,w|φ]. ∂s ≡ (nσ2

�
2Tt/m)−1∂tcon
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The kinetic equation for homogeneous state

Reduced distribution function

φ(c,w) ≡ 1

n

�
4TtTr

mI

�3/2

f(v,ω).

Kinetic equation for the reduced distribution functions

∂sφ+
µ20

3

∂

∂c
· (cφ) + µ02

3

∂

∂w
· (wφ) = J∗[c,w|φ],

µpq = −
�

dc

�
dw cpwqJ∗[c,w|φ]. ∂s ≡ (nσ2

�
2Tt/m)−1∂tcon

collision frequency
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Numerical solutions to the kinetic equation

1) Solution to the temporal differential equations for an expansion 
around the Maxwellian

φ(c,w) = φM (c,w)
∞�

n=0

∞�

m=0

∞�

�=0

knm�Ψnm�(c
2, w2, u2),

2) By means of Direct Simulation Monte Carlo (DSMC) method.

−∂s�cpwq�+ 1

3
(pµ20 + qµ02)�cpwq� = µpq,

−∂s�(c ·w)2�+ 2

3
(µ20 + µ02)�(c ·w)2� = µb.

Using this series expansion in the kinetic equation
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Magnitudes definitions

a20 =
4

15
�c4� − 1

a11 =
4

9
�c2w2� − 1

a02 =
4

15
�w4� − 1

b =
4

5

�
�(c ·w)2� − 1

3
�c2w2�

�

φ(c,w) ≈ φM (c,w)

�
1 + a20L

( 1
2 )

2 (c2) + a02L
( 1
2 )

2 (w2) + a11 × L
( 1
2 )

1 (c2)L
( 1
2 )

1 (w2) + b

�
(c ·w)2 − c2w2

3

��

We neglect terms beyond second order in the expansion
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Comparison with Monte Carlo simulations
Temporal Evolution.
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Comparison with Monte Carlo simulations.
Relaxation to hydrodynamic state.
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Comparison with Monte Carlo simulations.
Relaxation to hydrodynamic state.
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α = 0.7

β = 0.5

a02 = 0.07204

a20 = 0.00971
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Comparison with Monte Carlo simulations.
Hydrodynamic distribution function.
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Comparison with Monte Carlo simulations.
Hydrodynamic distribution function.
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An experiment.
Hydrodynamic distribution function.
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clarity, the evaporation line is not shown). For frequen-
cies below 70 Hz, the cooling gas undergoes a transition
to a collapse directly from a disordered phase. At fre-
quencies above 70 Hz, the medium first undergoes a tran-
sition to an ordered state [Figs. 1(g) and 1(h)], indicated
by the diamonds, and upon further cooling undergoes
another transition to a collapse and coexisting gaslike
phase. Both the ordered and the collapsed phases can be
identified by eye.
The nature of the correlations in the gas phase is more

subtle than in the collapsed or ordered phases but can
be quantified. Particle positions, determined from high-
resolution pictures [20], are used to calculate the particle-
particle correlation function, G�r� � �r�0�r�r����r�2,
where r is the particle density. In a hard sphere
equilibrium gas, G�r� shows no significant correlations
beyond one particle diameter. The correlations are due
only to geometric factors of excluded volume and are
independent of temperature [6].
The solid line in Fig. 3 shows G�r� from a Monte Carlo

calculation of a 2D gas of elastic hard disks in equilibrium
for a density of 0.463 [26]. The experimentally measured
correlation function in the gaslike phase (G � 0.892, n �
70 Hz), shown by the open circles, is almost identical to
the equilibrium result. There are no free parameters in
Fig. 3. The remarkable agreement clearly demonstrates
that the structure in the correlation function of the gaslike
phase is dominated by excluded volume effects. As
the granular medium is cooled, the correlations grow
significantly. This is evident from the data for an
acceleration of G � 0.774 (0.5% above the acceleration
where collapse forms), shown as filled diamonds in
Fig. 3. The increased correlations indicate that there are
nonuniform density distributions in the medium: regions
of high density that, due to the closed nature of the
system, imply regions of low density.

0.0 1.0 2.0 3.0 4.0 5.0
r (ball diameters)

0.0

1.0

2.0

3.0

4.0

G(r)

! = 0.892
! = 0.774
Chae, et al.

FIG. 3. Density-density correlation measurements of the
granular medium. The measured correlations are compared
to the result from an equilibrium hard sphere Monte Carlo
calculation [26].

A crucial ingredient of a statistical approach needed to
describe the dynamics in a granular system is the velocity
distribution, which may show nonequilibrium effects as
does the correlation function. Velocity distributions that
obey Maxwell statistics have been used in the formulation
of many kinetic theories of granular systems and the
deviations due to inelasticity have been assumed small
[2,4,5,9,12,27,28]. Recent results from simulations [7,10]
and experiments [13,14] demonstrate deviations from
Gaussian velocity distributions, but the experiments were
not able to resolve the functional form. With the use of
a high speed camera [21], the particle velocities can be
determined between collisions. Extensive measurement
of the velocity distributions in the plane of the granular
gas in our system demonstrates non-Gaussian behavior.
Figure 4 shows that experimentally measured veloc-

ity probability distributions in the gas (circles), clustering
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FIG. 4. Probability distribution function for a single compo-
nent of the horizontal velocity on (a) linear and (b) log scales.
The solid line is a Gaussian distribution. The data is (±)
G � 1.01, (�) G � 0.80, (�) G � 0.76 for N � 8000 and
n � 75 Hz; (�) G � 1.00 for N � 14 500 and n � 90 Hz.
The large population of low-speed particles is evident in (a),
while (b) shows that the tails are approximately exponential.
The data is scaled by y0 � �2y2

2m�1�2.

4371

Olafsen & Urbach,
Phys. Rev. Lett 81, 4369 (1998)
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Conclusions.

✤ There are always hydrodynamic solutions for steady laminar flows. 
This is not limited by the degree of inelasticity. 

✤ There is always a hydrodynamic solution for the homogenous cooling 
state, whether the spheres are smooth or rough. This is not limited by 
the degree of inelasticity.

✤ Furthermore, there is no direct relation between inelasticity and the 
ease with which the system reaches the hydrodynamic solution.
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THANK  YOU!!
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Expressions of polynomials in the distribution 
function expansion. 

Ψnm�(c
2, w2, u2) = L

(2�+ 1
2 )

n (c2)L
(2�+ 1

2 )
m (w2)×

�
c2w2

��
P2�(u)

u2 ≡ (c ·w)2/c2w2

L(α)
1 (x) = α+ 1− x

L(α)
2 (x) =

(α+ 1)(α+ 2)

2
− (α+ 2)x+

1

2
x2

P2(x) =
1

2
(3x2 − 1), P4(x) =

1

8
(35x4 − 30x2 + 3)
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µ20 = 4
√
2π

��
�α(1− �α) + �β(1− �β)

��
1 +

3a20
16

�
−θ

�β2

κ

�
1− a20

16
+

3a11−b

12

��

µ02 = 4
√
2π

�β
κ

��
1−

�β
κ

��
1− a20

16
+

3a11−b

12

�
−

�β
θ

�
1 +

3a20
16

��

Expressions of the collisional moments.
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