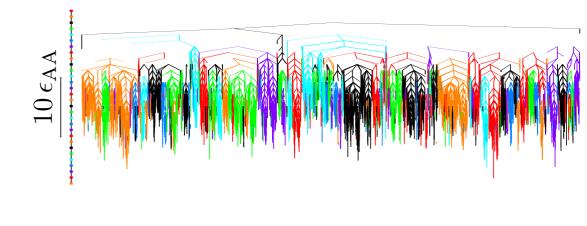
Glassy Dynamics in the Potential Energy Landscape

Vanessa de Souza

University of Granada, Spain University of Cambridge



Overview

Introduction

Strong and Fragile Glasses Potential Energy Landscape Visualising the Potential Energy Landscape

Glassy Dynamics

Coarse-graining the Landscape - Metabasins Cage-breaking Reversed and Productive Cagebreaks Calculating Diffusion Constants

Cage-break Metabasins

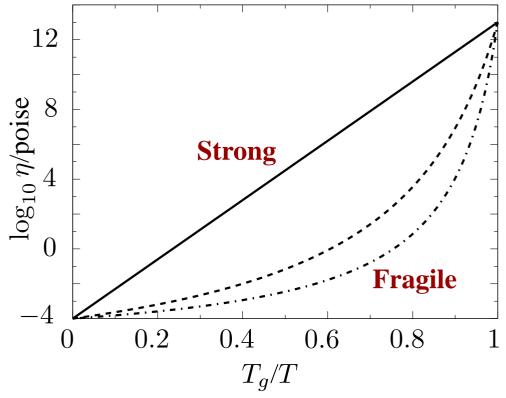
Random Walk Metabasins vs. Cagebreaks

'Super-Arrhenius' behaviour

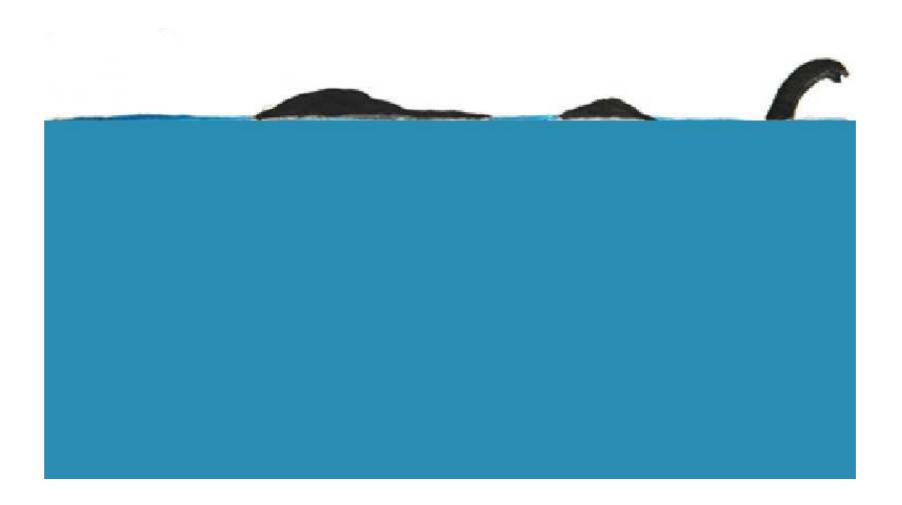
For some supercooled liquids, the temperature dependence of relaxation times or transport properties such as the diffusion constant, D, is stronger than predicted by the Arrhenius law.

	Arrhenius	Super-Arrhenius
Temperature dependence	Arrhenius Law	VTF equation
	$\eta = \eta_0 \exp[A/T]$	$\eta = \eta_0 \exp[A/(T-T_0)]$
Angell's classification	Strong	Fragile

Strong and Fragile Glasses



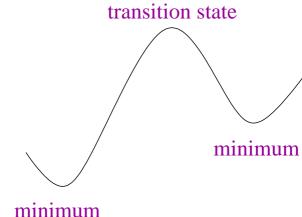
	Arrhenius	Super-Arrhenius
Temperature dependence	Arrhenius Law	VTF equation
	$\eta = \eta_0 \exp[A/T]$	$\eta = \eta_0 \exp[A/(T-T_0)]$
Angell's classification	Strong	Fragile



Glassy Dynamics in the Potential Energy Landscape - p. 4

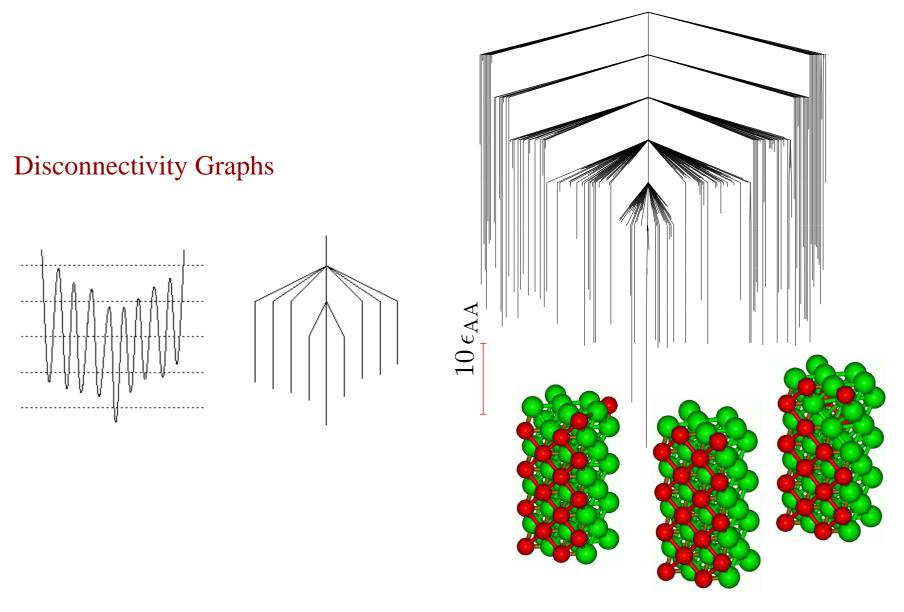
Potential Energy Landscape (PEL): the potential energy as a function of all the relevant particle coordinates.

- Any structure can be minimised to find its inherent structure, a minimum on the PEL.
- Discretisation and simplification of configuration space.



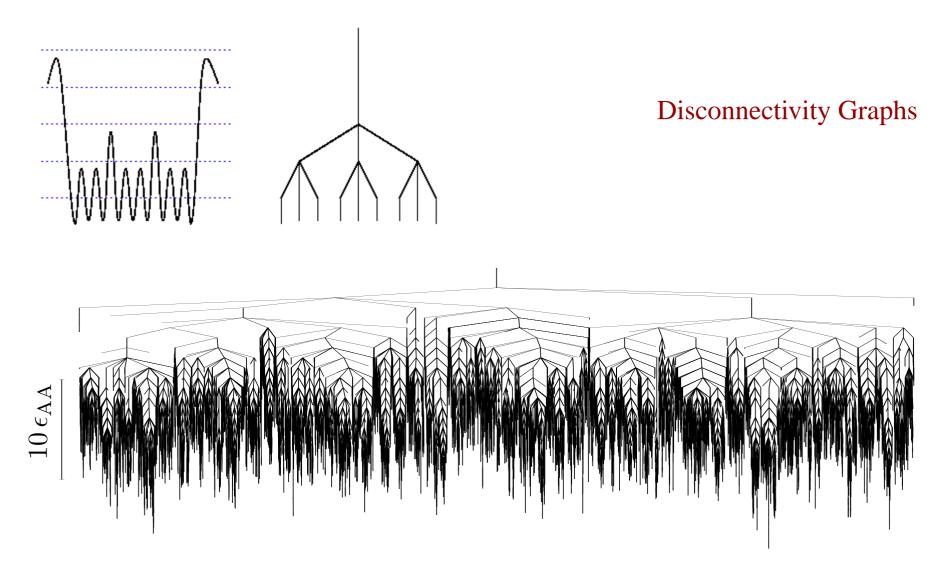
Dynamics requires information about transition states, the highest point on the lowest-energy pathway between two minima.

Visualising the Landscape - Crystal Landscapes



Calvo, Bogdan, de Souza and Wales, JCP 127, 044508 (2007)

Visualising the Landscape - Glassy Landscapes



de Souza and Wales, JCP 129, 164507 (2008)

Overview

Introduction

Strong and Fragile Glasses Potential Energy Landscape Visualising the Potential Energy Landscape

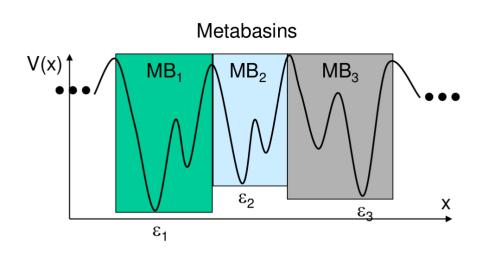
Glassy Dynamics

Coarse-graining the Landscape - Metabasins Cage-breaking Reversed and Productive Cagebreaks Calculating Diffusion Constants

Cage-break Metabasins

Random Walk Metabasins vs. Cagebreaks

Coarse-graining the landscape



- Transitions between metabasins follow a random walk
- Metabasins are well-characterised by an energy and waiting time
- Diffusion constants can be calculated

Doliwa and Heuer, PRE (2003)

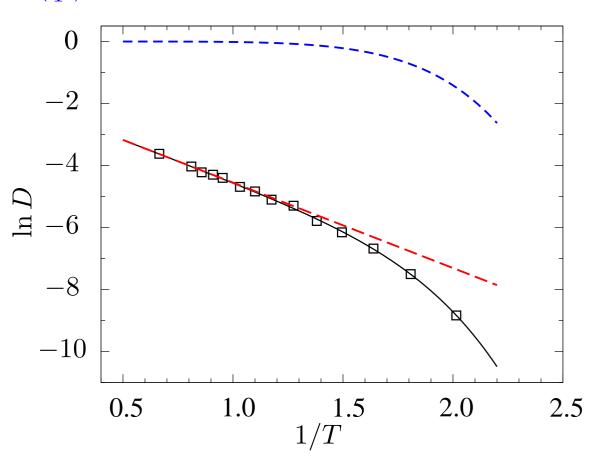
Problems with this approach:

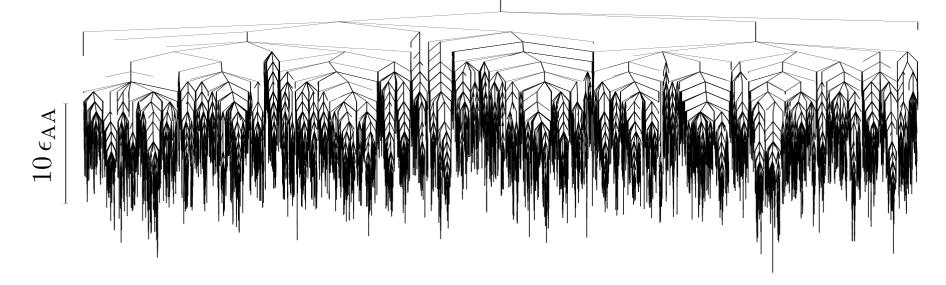
- How but not Why.
- No information about microscopic mechanisms, within metabasins or for transitions between metabasins.
- Identify minima by total system energy, the method cannot be scaled for larger system sizes, restricted to around 65 atoms.

Fitting to Super-Arrhenius Behaviour

- $\ln D_{\rm erg}(T) = -\left(\frac{m}{T}\right)^n \frac{c}{T} + \ln D_0$
- Arrhenius component: $-\frac{c}{T} + \ln D_0$
- Correction: $-\left(\frac{m}{T}\right)^n$

de Souza and Wales PRB 74, 134202 (2006) PRL 96, 057802 (2006)





Negative correlation in Minima-to-Minima Transitions

 \Downarrow

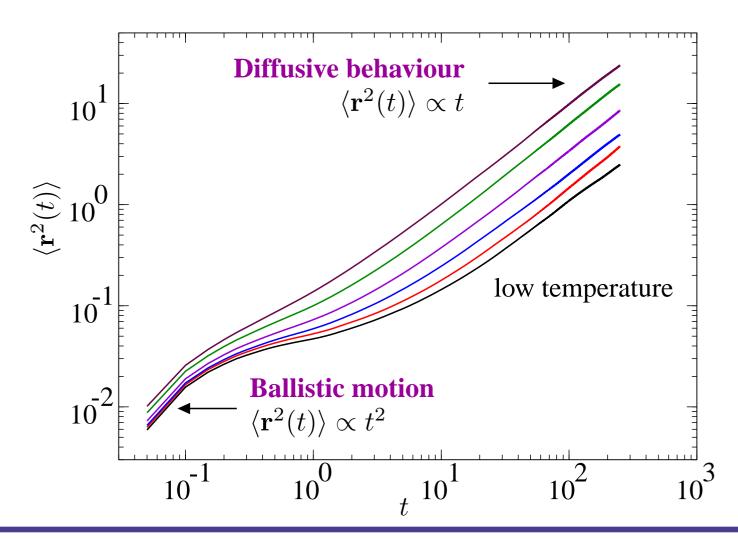
Negatively correlated Diffusive Processes

 \downarrow

Random Walk between Metabasins

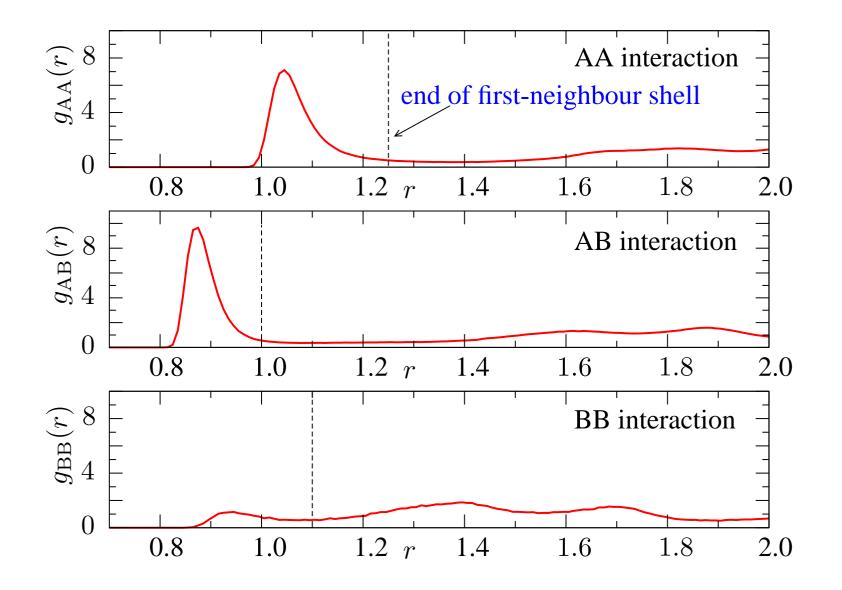
Mean square displacement \rightarrow Diffusion

Einstein relation: $D = \lim_{t \to \infty} \frac{1}{6t} \langle \Delta \mathbf{r}^2(t) \rangle$

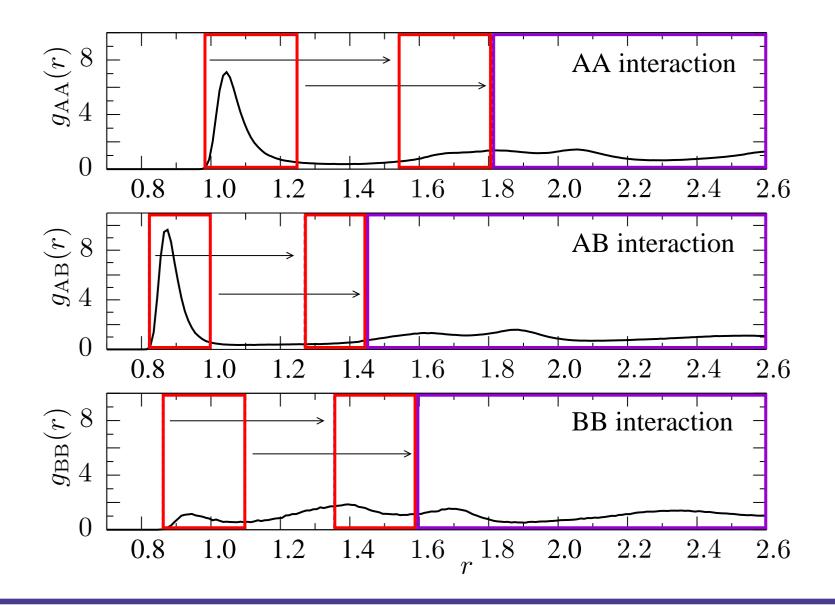


Glassy Dynamics in the Potential Energy Landscape - p. 12

Nearest Neighbours



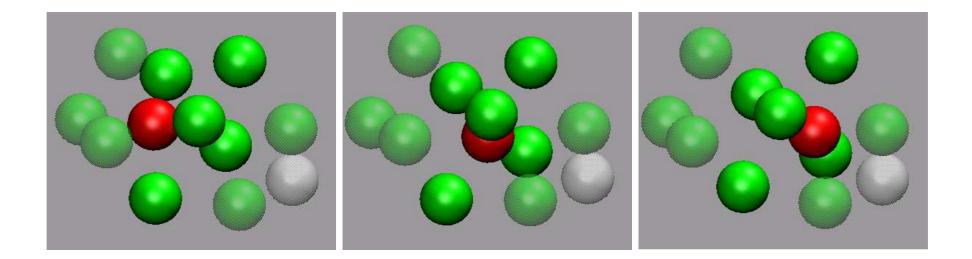
Glassy Dynamics in the Potential Energy Landscape - p. 13



Glassy Dynamics in the Potential Energy Landscape - p. 13,

Cage-Breaking Criteria

- Nearest neighbours are within a distance of 1.25 for an AA interaction.
- For the loss of a neighbour, relative distance changes by more than 0.561, which corresponds to half the equilibrium pair separation.
- A cage-break occurs with the loss/gain of at least two neighbours.



● Sequence of minimum – transition state – minimum for a cagebreak.

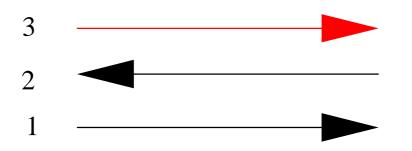
de Souza and Wales, JCP 129, 164507 (2008)

Reversed Cage-Breaks

- Identified when the net displacement squared is less than 10^{-5} .
- Chains of repeatedly reversed cage-breaks are found.
- Determine cage-breaks which are Productive towards long-term diffusion:

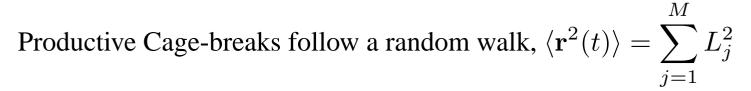
The cage-break is not followed by the reverse event. The cage-break is not part of a reversal chain OR

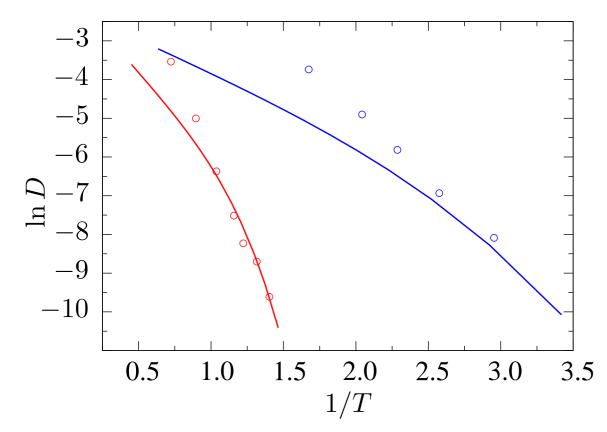
ends a chain with an even number of reversals.



3 cage-breaks2 reversalsLast cage-break is Productive

Diffusion from Productive Cage-Breaks





60-atom binary Lennard-Jones at number densities of 1.3 and 1.1Landscape-influenced regime (1/T):0.78 and 1.78Landscape-dominanced regime (1/T):1.56 and 3.56

Accounting for correlation

The following simplifications are suggested by our studies of diffusion using Molecular Dynamics trajectories:

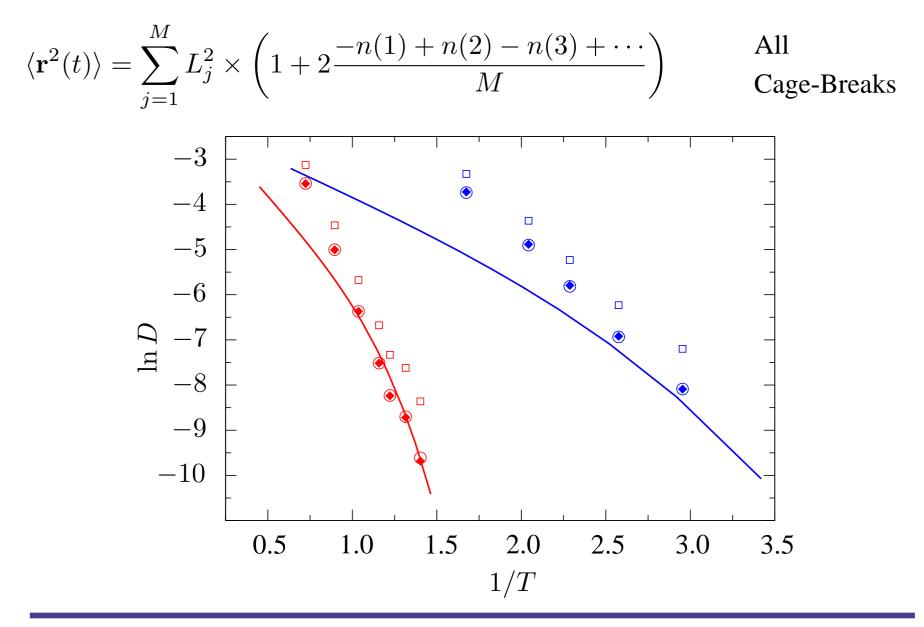
- The displacements of cage-breaks are similar and can be represented by a constant, L.
- Correlation arises from direct return events.
- We can account for correlation effects using a count of reversal chains of length z, n(z).

$$\langle \mathbf{r}^{2}(t) \rangle = ML^{2} \left(1 + 2 \frac{-n(1) + n(2) - n(3) + \cdots}{M} \right)$$



Reversal chain, z=2. Two reversal chains, z=1. n(1) = 2 and n(2) = 1

Diffusion from All Cage-Breaks



Glassy Dynamics in the Potential Energy Landscape - p. 18,

Overview

Introduction

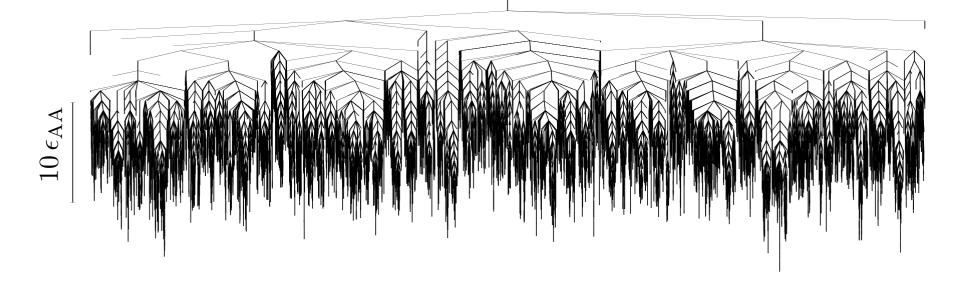
Strong and Fragile Glasses Potential Energy Landscape Visualising the Potential Energy Landscape

Glassy Dynamics

Coarse-graining the Landscape - Metabasins Cage-breaking Reversed and Productive Cagebreaks Calculating Diffusion Constants

Cage-break Metabasins

Random Walk Metabasins vs. Cagebreaks



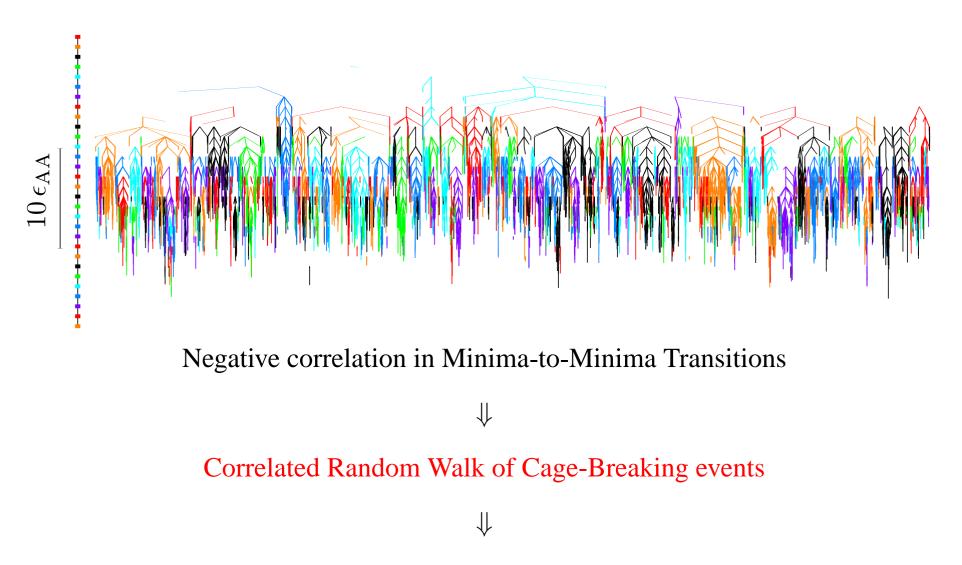
Negative correlation in Minima-to-Minima Transitions

 \Downarrow

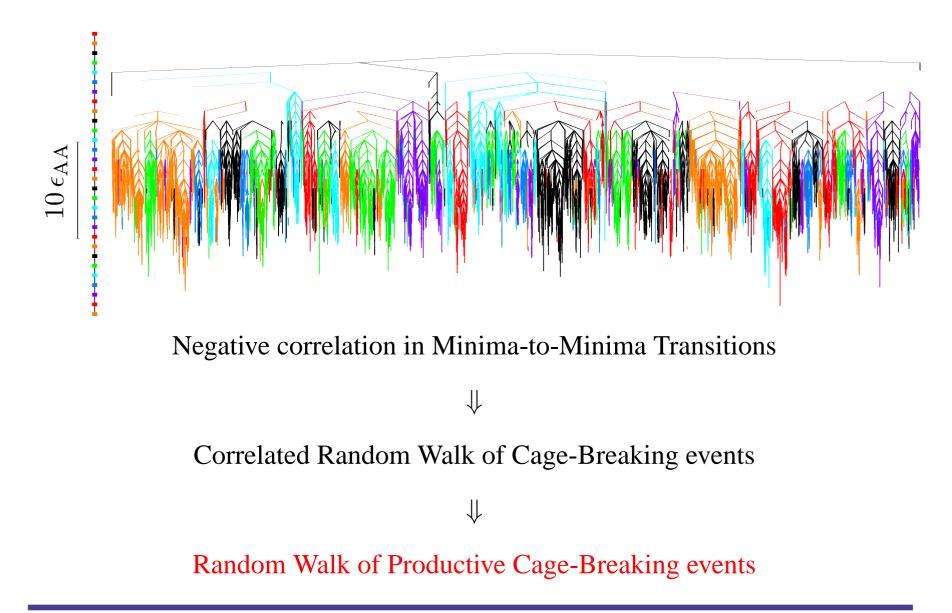
Negatively correlated Diffusive Processes

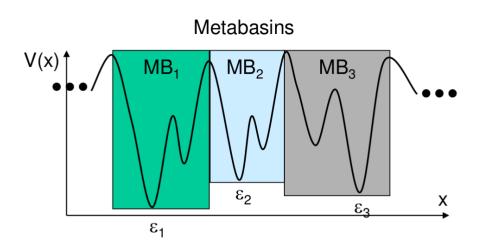
 \downarrow

Random Walk between Metabasins



Random Walk between Metabasins





Metabasins vs. Cagebreaks

- Transitions between metabasins follow a random walk
- Metabasins are well-characterised by an energy and waiting time
- Diffusion constants can be calculated

de Souza, Rehwald and Heuer, in preparation (2013)

Advantages of this method:

- How and Why.
- Information about microscopic mechanisms, within metabasins and for transitions between metabasins.
- Method can be scaled for larger system sizes.

Conclusions

- The Potential Energy Landscape for glass-forming systems is extremely complex.
- The landscape can be coarse-grained into metabasins
- Important transitions such as cagebreaks can be identified
- We have reconciled the two approaches, providing a microscopic description for metabasins within the PEL in the form of productive cagebreaks.
- Microscopic mechanisms <-> Macroscopic properties

