

Formation of the central engine of Long GRBs

Miguel A. Aloy

ERC Fellow Departamento de Astronomía y Astrofísica

collaborators N. DeBrye, C. F. Cuesta-Martínez, M. Obergaulinger, P. Cerdá-Durán, P. Mimica, J. A. Font

(Cerdá-Durán+'13, arXiv:1310.8290)

Supernovae and GRBs in Kyoto

Kyoto, 12 – 11 - 2013

LGRB Progenitors: Collapsars

Woosley (1993):

Collapse of a massive (M_{*} ~ 30M_☉, WR) rotating star that does not form a successful SN but collapses to a BH (M_{BH} ~ 3M_☉) surrounded by a thick accretion disk. The hydrogen envelope is lost by stellar winds, interaction with a companion, etc.

Caveats:

 Rapidly spinning stars produce low rotating cores due to magnetic torques (Spruit'02, Heger+'05)

Solutions:

- Low metallicity + strong rotation ⇒ chemically homogeneous evolution ⇒ cores retain high spin (Yoon& Langer'05, Woosley & Heger'06, Yoon+'06)
- Interacting binaries

Outcomes:

- LGRB?
- SNe / Unnovae?
- BH or proto-magnetar?

LGRB Progenitors: Collapsars

If the progenitor forms a collapsar:

- The viscous accretion onto the BH \Rightarrow strong heating \Rightarrow thermal vv-annihilating preferentially around the axis \Rightarrow formation of a relativistic jet (Γ >10)?.
- Numerical models: ultrarelativistic outflow can form *if luminosity* > $L_{th} \sim 10^{49}$ erg
- Numerical simulations: core-collapse, rapid rotation, computing GW and other aspects of the problem:

Shibata'00,'03, Dimmelmeier'02,'07,'08, Fryer'04, Cerdá-Durán'05,'07, Dessart'08, Kiuchi'09, Kotake'09,'11, Scheideger'10, Sekiguchi'11, O'Connor'10,'11, Ott'11,'13...

3

Formation of the central engine. the code

- General relativity:
 - ★ XCFC approximation (Isenberg 2008, Wilson et al 1996, Cordero-Carrión et al 2009)
 - ★ spectral methods (LORENE library)
- Godunov-type schemes for hydrodynamics.
- Spherical polar coordinates:

 $\star \Delta r = 200 \text{ m} (\text{innermost } 20 \text{ km})$

- ★ logarithmic grid for r>20 km -> Δ r ~ 800 m at 100 km
- ★ outer boundary 30000 km

 $\star \Delta \theta = 1.4^{\circ}$

- Axisymmetry (2D) + equatorial symmetry
- EOS: Lattimer & Swesty'91 + Timmes & Arnett'99 (table by O'connor & Ott 2010, LS220 in this work)
- GW: quadrupole formula (good approx. in PNS: Reisswig et al 2010)
- Neutrino leakage scheme (De Brye et al in prep)

Ruffert et al 1996, Rosswod & Liebendörfer 2003, O'connor & Ott 2010

Leakage simplified scheme

Life is actually harder...

The main focus of our models is not an accurate determination of whether a particular star develops an explosion due to neutrino heating, but specifically an exploration of the consequences of a fSN, *in which neutrino heating does not stop the mass accretion and thereby prevent the collapse of the inner core to a BH*.

Thus, very high accuracy in the neutrino physics is only of secondary relevance here and we can employ simple, fast approximations for the neutrino physics.

- Energy averaged: Fermi distribution

 \bullet

- inside \Rightarrow thermal + beta eq. $\Rightarrow \eta = \eta_{eq}, T_{\nu} = T_{fluid}$
 - outside \Rightarrow neutrinos scape $\Rightarrow \eta = 0$, $T_{\nu} = T_{\nu-\text{sphere}}$

- Neutrinosphere = τ threshold \Rightarrow ray-by-ray in radial direction

- Neutrinosphere-opacity loop (computationally expensive):

₆ NOTE: loop can be avoided by fixing beta-equilibrium everywhere (e.g. Sekiguchi'11)

- Diffusion region: rates based on optical depth

- Effective rates: Harmonic mean of diffusion and free streaming rates

$$E_{\nu_i}^{\text{diff}} = \frac{Q_{\nu_i}^{\text{diff}}}{R_{\nu_i}^{\text{diff}}}$$

$$E_{\nu_i}^{\text{free}} = \frac{Q_{\nu_i}^{\text{free}}}{R_{\nu_i}^{\text{free}}} \xrightarrow{1} \frac{1}{E_{\nu_i}^{\text{eff}}} = \frac{1}{E_{\nu_i}^{\text{diff}}} + \frac{1}{E_{\nu_i}^{\text{free}}}$$

$$Q_{\nu_i}^{\text{eff}} = R_{\nu_i}^{\text{eff}} E_{\nu_i}^{\text{eff}}$$

$$Q_{\nu_i}^{\text{eff}} = R_{\nu_i}^{\text{eff}} E_{\nu_i}^{\text{eff}}$$

- Three neutrino species: v_e , \overline{v}_e and v_X
- Neutrino emission:
 - β -processes: $e^- + p \rightarrow n + \nu_e$; $e^+ + n \rightarrow p + \overline{\nu}_e$
 - thermal pair annihilation: $e^- + e^+ \rightarrow v_i + \overline{v_i}$
 - plasmon decay: $\gamma \rightarrow \nu_i + \overline{\nu_i}$
- Neutrinos diffusion:
 - absorption: $n + v_e \rightarrow e^- + p$; $p + \overline{v}_e \rightarrow e^+ + n$
 - scattering: $\nu_i + N \rightarrow \nu_i + N$; $N \in \{p, n, A\}$
- Inelastic scattering: cannot be implemented in a leakage scheme (relevant before bounce). Alternatives:
 - Simple deleptonization scheme (Liebendörfer 2005)
 - Own deleptonization tables: 1D Simulations, multi-energy, hyperbolic 2momentum eqs. for *v*-transport ^(Obergaulinger & Janka 2013; Obergaulinger et al. 2013)

Comparison with Liebendörfer et al 2005 (G15 model)

Formation of the central engine. **Iimitations of our treatment**

- The thermal structure and the rotation profile of the PNS evolves from the t_{b} to t_{BH}
- \Rightarrow M_{BH}⁰ and t_{BH} depend on the evolution of the PNS, including the cooling by neutrinos diffusing out of the PNS and the angular momentum redistribution.
 - The presence of strong B-fields, due to the MRI, or non-axisymmetric instabilities will probably enhance the transport of angular momentum, decreasing the M_{BH}^0 and t_{BH} .
 - Non-magnetized axisymmetric simulations provide an upper limit to the t_{BH}.
 - Lower limit estimate for t_{BH} : time at which 2.41 M_o have accreted through the shock, $t_{BH}^{min} t_b \sim 820 \text{ ms}$.
 - Using a stiffer EoS would allow for larger maximum masses and hence longer collapse times.

Gravitational wave spectrum

Spectrogram analysis

Complex spectrogram, whose analysis is done by identifying frequencies and regions where this frequencies are produced (i.e., with the help of other spectrograms of, e.g., density, shock position, etc.)

Buoyancy frequency

• Local linear stability analysis (non-rotating, non-relativistic)

$$N^{2} = \left(\frac{\nabla \rho}{\rho} - \frac{\nabla P}{\Gamma_{1}P}\right) \cdot \boldsymbol{g} \qquad \text{Brunt-Väisälä frequency}$$

 $N^2 > 0$ Convectively stable (Ledoux criterion)

- Caveats:
 - Rotating star: Solberg-Høiland criteria (work in progress...)
 - General relativity (Müller et al 2013)

Spectrogram analysis. Buoyancy frequency

Postshock/PNS convection excites g-modes at the lower boundaries of the unstable regions.

$$f_{g,PNS} \sim \frac{\sqrt{N_{turn}^2}}{2\pi} \sim \frac{1}{2\pi} \frac{GM_{PNS}}{R_{PNS}^2} \sqrt{\frac{(\Gamma - 1)m_n}{\Gamma k_B T} \left(1 + \frac{GM_{PNS}}{2c^2 R_{PNS}}\right)^{-4}}$$
(Murphy et al 2009, Müller et al 2013)
Outer stable layer:
• ~ 100 Hz after bounce
• monotonically increasing
frequency to a few kHz
• contraction+v-cooling
 $f = 4/3$
 $k_B T = 15 \text{ MeV}$
 $f = 4/3$
 $k_B T = 15 \text{ MeV}$
 $f = 4/3$
 $f = 4/3$
 $k_B T = 15 \text{ MeV}$
 $f = 4/3$
 $f = 15 \text{ MeV}$
 $f = 4/3$
 $f = 15 \text{ MeV}$
 $f = 15 \text{ MeV}$

Avoided crossing of modes

During the rise: quadrupolar velocity patterns.

During the drop: quasi-radial velocity pattern. Since $f_{qr} \rightarrow 0 \Rightarrow$ unstable mode \Rightarrow BH formation (Chandrasekhar'64)

Change in behaviour of this feature likely due to an avoided crossing of two modes:

i. g-mode (inner convectively stable layer) $f_{\rm g,c} \sim \frac{1}{2\pi} \frac{GM_{\rm IC}}{R_{\rm IC}^2} \sqrt{\frac{1}{\Gamma} \frac{\Delta s}{s}} \left(1 + \frac{GM_{\rm IC}}{2c^2 R_{\rm IC}}\right)$

ii. qr-mode with decreasing frequency

Avoided crossings have been observed:

- Numerically: in NSs around its maximum mass (Gourgoulhon et al. 1995; Galeazzi et al. 2013)
- Perturbation analysis: radial- and fmodes^(Gondek et al. 1997; Kokkotas & Ruoff 2001) and crustal-modes^(Gondek & Zdunik 1999).

GW

Shock radius at equator

Signature of SASI on the gravitational waves

- · Observed from the neutrino-sphere to the shock location
- · Sound waves confined in a cavity
- · Multiple overtones

Spectrogram analysis

D: f-mode excited at bounce. Highly damped by sound waves in the hot bubble

$$f_{\rm f} \sim 0.78 + 1.635 \sqrt{\frac{M_{\rm PNS}}{1.4 \, M_{\odot}} \left(\frac{10 \, \rm km}{R_{\rm PNS}}\right)^3} \, \rm kHz$$
 (Andersson & Kokkotas'98)

Detectability

- How many massive, fast-EINSTEIN TELESCOPE
- Active matters of debate:
 - fraction of massive stat
 - channels for BH format
 - observational signature
- Hard to estimate the rate
 - They can be a sizable
 - Rate of fSNe ~10% of
 - 1D-pistons (no rotation
 - SN rate problem: SN the SN rate by observa
 - In local Universe (≤
 - \Rightarrow a fractior

- Paucity of observed high mass RSGs in 16.5M_☉ ≤ M ≤ 25M_☉ can be explained if they are fSNe. *fSNe rate* ≤ 20% of CCSN ⇒ ~ 0.2 y⁻¹ (Kochanek'13).
- 10% 50% of massive MS stars are fast rotators ($\leq 200 \text{ km s}^{-1}$; Mink+'13).
- ➡ Fast spinning, moderate-Z, massive stars happening in nearby galaxies, might bring detectable GW signals for the Einstein Telescope at rates of ≤ 0.1y⁻¹.

Conclusions

- The PNS phase in the collapsar scenario is optimal for GW emission:
 - Iarge amplitude : visible with ET in the Virgo cluster
 - Iong duration : ~ seconds
 - quasi-periodic signal
 - possible EM signal: long GRB, SN
- It may provide information about the conditions in the PNS
 size of PNS
 - contraction/accretion time-scale
 - ✓ cooling time-scale
 - **M** rotation
 - SASI
- Detectability: prospects for ~0.1 yr⁻¹ with Einstein Telescope.