particle acceleration and magnetic fields: looking at the nw rim of rcw 86 with chandra

sne-grb workshop kyoto oct 2013



daniel castro - mit

#### collaborators

laura lopez – mit pat slane – cfa hiroya yamaguchi – cfa\* enrico ramirez-ruiz – ucsc enectali figueroa-feliciano – mit

special credit to joe depasquale at cxc for imaging help



#### outline

what evidence is there that SNRs accelerate cosmic rays?

how does the magnetic field get amplified? and how do we know it does?

what have we learnt studying rcw 86 with chandra?

# 0. primer: what are snrs?

- explosive end of a star
- two types:
  - core-collapse
  - thermonuclear
- material ejected with ~10<sup>51</sup> erg kinetic energy
- shock wave forms & sweeps up ISM/CSM



### 0. primer: what are snrs?



e.g. caprioli 2012



# what evidence is there that SNRs accelerate cosmic rays?

#### non-thermal X-rays

- y-ray emission
- dynamical properties
- structure

#### koyama+ 1995



- non-thermal X-rays
- y-ray emission
- dynamical properties
- structure

hinton & hofmann 2009 uchiyama+ 2002 aschenbach 1998 vink+ 2006 aharonian+ 2006, 2007,2008 naumann-godo+ 2006



#### non-thermal X-rays

- y-ray emission
- dynamical properties
- structure

 Table 1

 SNRs Observed with the Fermi-LAT

| Gala  | ctic  |                     |                                     |
|-------|-------|---------------------|-------------------------------------|
| 1 (°) | b (°) | Name                | Reference                           |
| 6.4   | -0.1  | W28                 | Abdo et al. (2010a)                 |
| 8.7   | -0.1  | W30                 | Castro & Slane (2010)               |
| 23.3  | -0.3  | W41                 | Castro et al. (2013a)               |
| 31.9  | 0.0   | 3C 391              | Castro & Slane (2010)               |
| 33.6  | 0.1   | Kes 79              | Auchettl et al. (2013) <sup>a</sup> |
| 34.7  | -0.4  | W44                 | Abdo et al. (2010c)                 |
| 43.3  | -0.2  | W49b                | Abdo et al. (2009)                  |
| 49.2  | -0.7  | W51C                | Abdo et al. (2009)                  |
| 74.0  | -8.5  | Cygnus Loop         | Katagiri et al. (2011)              |
| 78.2  | 2.1   | $\gamma$ -Cygni SNR | Lande et al. (2012)                 |
| 89.0  | 4.7   | HB 21               | Reichardt et al. (2012)             |
| 109.1 | -1.0  | CTB 109             | Castro et al. (2012)                |
| 111.7 | -2.1  | Cas A               | Abdo et al. (2010b)                 |
| 120.1 | 1.4   | Tycho               | Giordano et al. (2012)              |
| 180.0 | -1.7  | S147                | Katsuta et al. (2012)               |
| 189.1 | 3.0   | IC443               | Abdo et al. (2010d)                 |
| 260.4 | -3.4  | Puppis A            | Hewitt et al. (2012)                |
| 266.2 | -1.2  | Vela Jr.            | Tanaka et al. (2011)                |
| 304.6 | 0.1   | Kes 17              | Wu et al. (2011)                    |
| 337.0 | -0.1  | CTB 33              | Castro et al. (2013a)               |
| 337.8 | -0.1  | Kes 41              | Castro et al. (2013b) <sup>a</sup>  |
| 347.3 | -0.5  | RX J1713.7 3946     | Abdo et al. (2011)                  |
| 348.5 | 0.1   | <b>CTB 37A</b>      | Castro & Slane (2010)               |
| 349.7 | -0.5  | G349.7-0.5          | Castro & Slane (2010)               |
| 357.7 | -0.1  | MSH 17-39           | Castro et al. (2013a)               |

<sup>a</sup> In preparation Interacting with MCs

LAT SNR catalog (sometime in the next 12 months)

- non-thermal X-rays
- y-ray emission
- dynamical properties
- structure



hughes+ 2000

- non-therma
- y-ray emiss
- dynamical p
- structure



- non-thermal X-rays
- y-ray emission
- dynamical properties
- structure



- non-thermal X-rays
- y-ray emission
- dynamical properties
- structure



- non-thermal X-rays
- y-ray emission
- dynamical properties
- structure
- non-thermal X-rays





2005

2006

uchiyama+ 2007

how does the magnetic field get amplified? and how do we know it does?

#### how

.resonant cosmic ray streaming instability e.g. zirakashvili 2000 .bell's non-resonant instability bell 2004 .non-resonant long-wavelength instability bykov & toptygin 2005 .others...

#### evidence

.spectral curvature in radio emission (a little iffy)

.broad-band fits of synchrotron emission between radio and non-thermal X-rays .rapid variability of nonthermal X-ray emission from bright filaments in SNRs .sharp X-ray edges

#### evidence

.spectral curvature in radio emission (a little iffy)

.broad-band fits of synchrotron emission between radio and non-thermal X-rays .rapid variability of nonthermal X-ray emission from bright filaments in SNRs .sharp x-ray edges

#### .sharp x-ray edges

| 40           | - i yO           | Tvo          |          |       |         | a. Ala                                                                                                         |             | \$ A    | 1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                |          |
|--------------|------------------|--------------|----------|-------|---------|----------------------------------------------------------------------------------------------------------------|-------------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|----------|
| )            |                  | ho (2 0      |          |       |         | and a second |             |         | AL AN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 15             |          |
| 20           |                  |              | - 1.     |       |         | Sec. 36                                                                                                        |             |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - Liller       | 1        |
| 0:25 00      |                  | M. Angel     |          |       | 30 - 30 |                                                                                                                | 4           | 1 A     | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |          |
| 40 6         |                  | <u>с</u> 8   | <b>e</b> |       | 4 8     | 4:10                                                                                                           | 0<br>1<br>1 | 3 5     | 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | e e            |          |
| 56,          | - 1999<br>- 1999 |              |          |       |         |                                                                                                                |             |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |          |
| 51           | 8                | -21:31       | 8        | 30    | 30      | 2                                                                                                              | 29          | -21;28: | 28:30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8              | NR R     |
| 52 17:30 50  |                  |              |          | 2     |         |                                                                                                                |             |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |          |
| 48 46        |                  |              |          | 2     |         |                                                                                                                |             |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |          |
| 3. <b>41</b> | Keple            |              |          |       |         |                                                                                                                |             |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |          |
| 42 17:30     | r (4.0-          |              |          |       |         |                                                                                                                |             |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | 33251    |
| 40 38 39     | 0.0 keV)         |              |          |       |         |                                                                                                                |             |         | and a state of the |                | 1. A. A. |
| 50           |                  |              |          |       |         |                                                                                                                |             |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | . Cas A (5.0   |          |
| ) 4          |                  | 2            |          | N     |         |                                                                                                                |             |         | <u>- 19 - 19 - 19 - 19 - 19 - 19 - 19 - 19</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                |          |
| 0            | A Starting       | $\mathbf{b}$ |          |       | AND     |                                                                                                                |             | a.      | 23.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                |          |
| 30 4         | 9 47:0           | Q            | <u> </u> | · 2ª  | 8       | 1 (1 <sup>°</sup>                                                                                              | (a)         | 1 2     | <b>g</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 16.50<br>58:50 | 9        |
| 23:23:20     |                  | Pet S        |          | - Els |         |                                                                                                                | 1.1         |         | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |          |

bamba et al. 2005

#### .sharp x-ray edges

vink et al. 2006

|        |             |                   |                            |            |                         |                        | - 62010/ |
|--------|-------------|-------------------|----------------------------|------------|-------------------------|------------------------|----------|
| SNR    | Dist<br>kpc | $V_s  m kms^{-1}$ | ${m_0 \over { m cm}^{-3}}$ | width<br>" | $B_{loss} \ \mu { m G}$ | $B_{diff}\ \mu { m G}$ | 62 10    |
| Cas A  | 3.4         | 5200              | 3                          | 0.5        | 249                     | 299                    | -62°15′  |
| Kepler | 4.8         | 5300              | 0.35                       | 1.5        | 97                      | 113                    |          |
| Tycho  | 2.4         | 4500              | 0.3                        | 2          | 113                     | 165                    | -62°20′  |
| SN1006 | 2.2         | 4300              | 0.1                        | 20         | 30                      | 39                     |          |
| RCW86  | 2.5         | 3500              | 0.1                        | 45         | 24                      | 14                     | (00      |

vink 2006



#### .sharp x-ray edges

vink et al. 2006

0.5-1.0 keV 1.0-2.0 keV 2.0-6.6 keV

RA (J2000)

44m00s



# what have we learnt studying rcw 86 with chandra?



x-ray: nasa/cxc/sao & esa; infared: nasa/jpl-caltech/b. williams (ncsu)



chandra and xmm

red: 0.5 - 1 keV green: 1.5 - 2 keV blue: 2 - 8 keV





Region A

0.01

|          |                           | SR                                                  | Power-Law                                               |               |  |                        |                                                        |                                       |               |
|----------|---------------------------|-----------------------------------------------------|---------------------------------------------------------|---------------|--|------------------------|--------------------------------------------------------|---------------------------------------|---------------|
| Region   | $h u_{ m roll-off}$ (keV) | $F_{\rm srcut}^{\rm a}$<br>(10 <sup>-13</sup> erg c | $F_{\rm nei}^{a}$<br>cm <sup>-2</sup> s <sup>-1</sup> ) | $\chi^2$ /dof |  | Г                      | $F_{\text{powerlaw}}^{a}$<br>(10 <sup>-13</sup> erg cm | $F_{\rm nei}^{a}$ $^{-2} \rm s^{-1})$ | $\chi^2$ /dof |
| A        | $0.37^{+0.05}_{-0.06}$    | 1.93                                                | 0.004                                                   | 108.2/106     |  | $2.65^{+0.06}_{-0.06}$ | 1.92                                                   | 0.003                                 | 110.3/106     |
| B        | $0.12_{-0.02}^{+0.03}$    | 0.68                                                | 0.023                                                   | 57.4/55       |  | $3.1_{-0.1}^{+0.1}$    | 0.71                                                   | 0.021                                 | 58.6/55       |
| <b>C</b> | $0.17_{-0.04}^{+0.06}$    | 0.54                                                | 0.003                                                   | 47.1/54       |  | $2.9^{+0.1}_{-0.1}$    | 0.56                                                   | 0.003                                 | 47.1/54       |
| D        | $0.28^{+0.03}_{-0.05}$    | 2.39                                                | 0.147                                                   | 190.8/166     |  | $2.78^{+0.06}_{-0.06}$ | 2.44                                                   | 0.144                                 | 190.5/166     |
| Е        | $0.6^{+0.3}_{-0.2}$       | 0.72                                                | 0.026                                                   | 63.8/53       |  | $2.5^{+0.1}_{-0.1}$    | 0.74                                                   | 0.025                                 | 64.4/53       |
| F        | $0.46_{-0.09}^{+0.06}$    | 3.32                                                | 0.080                                                   | 173.9/162     |  | $2.59^{+0.06}_{-0.06}$ | 3.40                                                   | 0.077                                 | 171.5/162     |
| G        | $0.32_{-0.04}^{+0.06}$    | 3.03                                                | 0.016                                                   | 167.7/143     |  | $2.68^{+0.05}_{-0.05}$ | 3.05                                                   | 0.012                                 | 167.8/143     |
| Н        | $0.8^{+0.2}_{-0.2}$       | 1.76                                                | 0.018                                                   | 134.9/87      |  | $2.43_{-0.08}^{+0.08}$ | 1.76                                                   | 0.016                                 | 131.1/87      |
| I        | $0.27_{-0.04}^{+0.05}$    | 4.03                                                | 0.052                                                   | 149.2/125     |  | $2.75_{-0.06}^{+0.06}$ | 4.14                                                   | 0.047                                 | 150.4/125     |

#### from Bamba+ 2003

$$f(x) = \begin{cases} A \exp\left(-\left|\frac{x_0 - x}{l_{up}}\right|\right) & x > x_0 \\ A \exp\left(-\left|\frac{x_0 - x}{l_{down}}\right|\right) & x < x_0 \end{cases}$$





#### PROFILE FIT PARAMETERS AND MAGNETIC FIELD ESTIMATES

| Region           | l <sub>down</sub><br>(arcsec) | <i>l</i> <sub>up</sub> (arcsec) | $\chi^2/({ m dof})$    | l <sub>down</sub><br>(pc)                                      | $l_{\rm up}$ (pc)                  | $V_{\rm s}^{\rm a}$ (km s <sup>-1</sup> ) | $B_{adv}^{b}$<br>( $\mu$ G) | $B_{ m diff,d}{}^{ m c}$ ( $\mu  m G$ ) | $B_{ m diff,u}{}^{ m c}$<br>( $\mu  m G$ ) | $B_{\text{joint}}^{d}$<br>( $\mu$ G) |
|------------------|-------------------------------|---------------------------------|------------------------|----------------------------------------------------------------|------------------------------------|-------------------------------------------|-----------------------------|-----------------------------------------|--------------------------------------------|--------------------------------------|
| NE Arc<br>NW Arc | $  14 \pm 2 \\ 10 \pm 2  $    | $10\pm 3$<br>3 + 1              | 60 / (59)<br>94 / (74) | $\begin{vmatrix} 0.17 \pm 0.03 \\ 0.12 \pm 0.02 \end{vmatrix}$ | $0.13 \pm 0.04$<br>$0.03 \pm 0.02$ | $810 \pm 150$<br>$810 \pm 150$            | 27<br>33                    | 300<br>370                              | 140<br>360                                 | 110<br>140                           |
| Main Rim         | $22\pm 2$                     | $5\pm1$                         | 75 / (65)              | $0.27 \pm 0.03$                                                | $0.06 \pm 0.01$                    | $650 \pm 120$                             | 17                          | 250                                     | 280                                        | 80                                   |



ghavamian et al. 2001

#### PROFILE FIT PARAMETERS AND MAGNETIC FIELD ESTIMATES

| Region   | l <sub>down</sub><br>(arcsec) | <i>l</i> <sub>up</sub> (arcsec) | $\chi^2/({ m dof})$ | l <sub>down</sub><br>(pc)                                                       | l <sub>up</sub><br>(pc) | $V_{\rm s}^{\rm a}$ (km s <sup>-1</sup> ) | $B_{adv}^{b}$<br>( $\mu$ G) | $B_{\rm diff,d}{}^{\rm c}$ $(\mu { m G})$ | $B_{\rm diff,u}{}^{\rm c}$<br>( $\mu { m G}$ ) | $B_{\text{joint}}^{d}$<br>( $\mu$ G) |
|----------|-------------------------------|---------------------------------|---------------------|---------------------------------------------------------------------------------|-------------------------|-------------------------------------------|-----------------------------|-------------------------------------------|------------------------------------------------|--------------------------------------|
| NE Arc   | $14 \pm 2$                    | $10 \pm 3$                      | 60 / (59)           | $\begin{vmatrix} 0.17 \pm 0.03 \\ 0.12 \pm 0.02 \\ 0.27 \pm 0.03 \end{vmatrix}$ | $0.13 \pm 0.04$         | $810 \pm 150$                             | 27                          | 300                                       | 140                                            | 110                                  |
| NW Arc   | $10 \pm 2$                    | $3 \pm 1$                       | 94 / (74)           |                                                                                 | $0.03 \pm 0.02$         | $810 \pm 150$                             | 33                          | 370                                       | 360                                            | 140                                  |
| Main Rim | $22 \pm 2$                    | $5 \pm 1$                       | 75 / (65)           |                                                                                 | $0.06 \pm 0.01$         | $650 \pm 120$                             | 17                          | 250                                       | 280                                            | 80                                   |

# iii. rcw 86: next step





.thin nonthermal x-ray rims observed in the nw of rcw 86

high magnetic fields derived using filament widths

.shock velocity derived from balmer line profiles (optical observations) appears too low