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Possible emission sites in GRBs
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Central engine [meters]

Relativistic ejection

Internal dissipation in ‘
optically thin regime /‘ ®
(shocks or reconnection) \ External shock
Reverse shock

Contribution of each region ¢
Dissipation mechanism ¢
Radiative process ¢

Internal dissipation: prompt Deceleration: afterglow



Internal dissipation (1) photosphere

= PHOTOSPHERE: -The relaftivistic outflow becomes tfransparent
-Internal energy can be released as radiation

-Almost no theoretical uncertainties
(still: lateral geometry of the jet; initial magnetization)

-Spectrum is quasi-thermal:  exp. cutoff at high-energy
PL at low-energy with a. = +0,4

Planck — Photosphere

Spectrum

geometry

> E




Internal dissipation (1) photosphere

= PHOTOSPHERE: -The relaftivistic outflow becomes tfransparent
\ -Internal energy can be released as radiation

-Almost no theoretical uncertainties
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= DISSIPATIVE PHOTOSPHERE:
-Sub-photospheric dissipation: non-thermal electrons

-Large uncertainties: details of the dissipation process
neutron heating ¢ internal shocks ¢ reconnection ¢ ...

-Spectrum is non-thermail:
Comptonization: high-energy tail
Synchrotron radiation: modifies the low-energy slope



Internal dissipation (2) optically thin

Non-thermal emission can be produced above the photosphere if there are
dissipation processes producing non-thermal electrons.

SSC is ruled out by Fermi observations — Synchrotron ¢

o INTERNAL SHOCKS -Assumes.  Variability of the central engine

+ low magnetization at large distance
_—
ﬁj
—~

-Large uncertainties:
microphysics (B amplification, e acceleration) ¢

-Non-thermal spectrum, several components (syn, IC)

= RECONNECTION: -Assumes.  Variability + large mag. at large distance

-Large uncertainties:
radius ¢ microphysics ¢

-Non-thermal spectrum

rec




Prompt soft gamma-ray emission



Light curves

All possible sites for the prompt emission can reproduce the observed variable
light curves, but with important differences:

= (DISSIPATIVE) PHOTOSPHERE: -Low radius: curvature effect is negligible
(except for peculiar lateral distribution)

-The light curve directly traces the activity
of the central engine

= INTERNAL SHOCKS: -The light curve is also tracing the cenftral activity

-Additional effects:
shock propagation & curvature effect

= RECONNECTION: -The light curve is also tracing the cenftral activity

-Additional effects:
reconnection process (fast variability)
& curvature effect

Open issue with observations:
continuum of variability timescales or two components ¢



Spectrum (1) models ryoE
a p

. >V

General shape (“Band”) / Low-energy photon index a (obs: a = -1)
= PHOTOSPHERE: ? -a. too large except for peculiar lateral struct.
-Instantaneous spectrum is narrow o g
O o
= DISSIPATIVE PHOTOSPH.: -o. correct (depends on magnetization) 8 ;
-Instantaneous spectrum is narrow © 2

= INTERNAL SHOCKS: 7 -Synchrotron only: a = -3/2 (fast cooling)

-Possible mechanisms fo increase a
IC in KN regime ; B decay in shocked region

-Other process ¢
-Spectrum is too broad around the peak ¢

= RECONNECTION: ? -a. correct 2 (slow heating in furbulent acc.)

-Spectrum is probably much too broad
(multi emitters)



Spectrum (&) observations

= Should we believe the distribution of a ¢ the Band shape ¢
-Fermi bursts: multi-component spectra (2, 3 components)

-Parameters of the “Band” component vary when the other
components are taken into account

= Should we believe that the spectrum is narrow around the peak ¢
-Spectral evolution in GRBs
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Spectrum (&) observations

= Should we believe the distribution of a ¢ the Band shape ¢
-Fermi bursts: multi-component spectra (2, 3 components)

-Parameters of the “Band” component vary when the other
components are taken into account

= Should we believe that the spectrum is narrow around the peak ¢
-Spectral evolution in GRBs

-The intfegration of a fime-evolving Band function is not a Band function
(it is broader)



Pulse

Typical pulse decay
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Pulse

Typical pulse decay
——>

Luminosity

Time-integrated spectrum

e
=

E2 #/(E) [arbitrary units]

: Band with same E
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The integration of a time-evolving Band function is not a Band function.




Distribution of Epeak
Hardness-Duration correlation

= E oo Varies alof :
-from a GRB to another (XRF, XRR, GRBs, short GRBs)
-within a GRB (spectral evolution)

-dissipative photosphere: (depends on the details of the heating)
-internal shocks:

-reconnection: ?

= Short bursts have usually higher peak energies
-dissipative photosphere: change in properties of central engine ?
-internal shocks: natural explanation

-reconnection:



T

Hardness-Duration in internal shocks

%-

E, obs [keV]

Spectrum
at peak flux
BATSE
channels

-0 B

Time
lag
Atg, [s]

Effect of duration:

width
—dLn(W)/dE

-hardness-duration correlation

-lags become short
and tend fo zero

-pulses become
more symmetric

ratio
'rr/‘rd

Hardness
ratio Hg,

Pulse duration Ty, [50-300 keV]

Pulse calculation: the only varying parameter is the duration



Spectral evolution

E, evolution (intensity tracking)
Hardness Intensity correlation (HIC)
Hardness Fluence correlation (HFC)
Pulse width vs Energy ; Time lags ; etc.

= Dissipative photosphere: details of the dissipative process 7

= Internal shocks: -natural qualitative agreement ;
-constraints on microphysics
for a quantitative agreement

» Reconnection: 7



Dissipative photosph.: spectral evolution
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Dissipative photosph.: spectral evolution
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Internal shocks: spectral evolution

Example of a simulated pulse (internal shocks with full radiative calculation)
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The end of the prompt emission:
X-ray early steep decay

= A natural explanation: high-latitude emission from the prompt (fits well XRT data)

-(Dissipative) photosphere: (radius is too small)
-Internal shocks: (final radius of the order of I'? ¢ t )
-Reconnection: (final radius 2)
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High-latitude emission in internal shocks
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The end of the prompt emission:
X-ray early steep decay

= A natural explanation: high-latitude emission from the prompt (fits well XRT data)

-(Dissipative) photosphere: (radius is too small)
-Intfernal shocks:

-Reconnection:
= Alternative explanation: late evolution of the central engine
- Photosphere: ? (inefficient ¢)

- Dissipative photosphere: 7 (constraints on dissipative process ¢)



Dissipative ph.: X-ray early steep decay
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Blectron acceleration in intern. shocks ¢

Microphysics is the main source of uncertainties in internal shocks. It is sometimes
proposed that they play only a dynamical role, without associated emission.

= Acceleration is difficult (PIC simulations, ...) :

However, if electron acceleration does not work in the mildly relativistic
regime, then:

Major crisis !

-no emission from internal shocks, even in non GRB sources
-no emission from the reverse shock

-no emission from the late forward shock

» Shock acceleration leads to Maxwellian+Power-law tail:
one should detect the Maxwellian !

Same question should be asked for the Forward and Reverse Shock

small e (Maxwell) / e, (PL) 2



Dissipative photosphere:
emission above the photosphere

= Several possible dissipation process have no reasons to stop close
to the photosphere:

e.g. internal shocks, reconnection

= Hidden component in the spectrum ¢

No detection: constraints on the dissipation efficiency 2



Photosphere+internal shocks/reconn.

In the optical thin scenario (infernal shocks or reconnection), photospheric
emission is expected, with a brightness depending on the composition of the jet.

= GBM observations: weak photospheric emission is detected ¢

GRB 1007248 | |- GRB 120323A
(long) T (short)
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= Favors magnetic acceleration, with a range of magnetization in the GRB
population, with a hint for a lower magnetization in short GRBs



Photosphere + internal shocks
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Prompt GeV emission
Prompt optical emission



Prompt GeV emission (LAT)

= There is probably a prompt variable component in the LAT,
different from the long lasting emission (external origin)

GRB 0909028

=ty
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t,.,, <100 ms

= Stfrong constraint on the emission radius from yy opacity

- (Dissipative) photosphere: Additional process is needed
(e.g. scattering mechanism proposed
by Beloborodov et al.)

- Internal shocks: (IC)
- Reconnection: ?



Prompt GeV emission in internal shocks
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Prompt optical emission

= The prompt optical emission can change a lot from a burst to another
= |[n optical bright burst, the optical emission is probably variable: internal origin
GRB 080319B @ 7 = 0.937
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= Sfrong constraint on the radius from the synchrotfron self-absorption

- (Dissipative) photosphere: Additional process is needed
(e.g. mechanism proposed

by Beloborodov et al.)

- Internal shocks: (late collisions)
- Reconnection: ?



Optical emission from internal shocks

Time since BAT trigger (s)



Afterglow



Deceleration: emission sites

= FORWARD SHOCK: -Dynamics is well understood

-Main uncertainty: microphysics
(but also: external medium)

= REVERSE SHOCK: -Assumes low magnetization at large distance
-Main uncertainty: microphysics

In both cases: non-thermal radiation from shock-accelerated electrons

Contact
disconftinuity

> Density

Reverse

Radius

ejecta | external
medium

Relativistic External
ejecta medium




GR.

B emission

Afterglow
(X-rays)

inifial steep decay: a=3-5

Plateau

shallow decay:
a=0-0.5

<€

\

Also: optical, radio afterglow
long-lasting LAT emission



GR.

B emission: « standard » model

Internal origin




GRB emission: « standard » model

External origin

Log Time
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Some issues with afterglow theory

= Early X-ray afterglow: plateaus
- FS: - late activity of the central engine ¢ /{ (energy crisis)
- varying microphysics ?

- RS: OK if long lasting RS due to low-T" tail
Requires: - inefficient radiation from FS (acceleration in UR regime ¢) ?
- comparable efficiency prompt/RS (internal shocks ¢)

= Variability in optical afterglows: bumps (e.g. GRB 030329)
- FS: - density clumps
- Refreshed shocks ¢ (requires very low AI/T: post IS 2)

- RS: OK if long lasting RS due to low-T tail (same constraints as above)

= Variability in X-ray afterglows: flares
- FS: - iImpossible
- Requires late prompt emission ?
- RS: OK if long lasting RS due to low-T tail
Requires: - over-densities in ejecta (a signature from internal shocks 2)



summary



summary

Understanding the physical origin of the GRB emission is difficult, especially for
the prompt emission.

=Dissipative photospheres are promising, however:

- strong constraints on the unknown dissipation process
- Y*complicated” model: different mechanisms for different components
in the prompt (soft y-rays, opftical, GeV)

=Reconnection above the photosphere looks promising, however:

- uncertainties both on the dynamics and the microphysics

- difficult to conclude without any predictions for the spectrum

- potential problem with the spectral shape (broadening by multi-emitters)
=Internal shocks can produce emission from optical to GeV. The model can be
explored in detqils (spectral evolution, etc.). Results are promising, however:

- uncertainties on the microphysics

- is there a problem with a ¢ With the efficiency ¢

- Is there a problem with the general shape of the spectrum ¢ (too broad ¢)

=Obsevations: a better description of the spectral properties is needed
(issues with the present method of analysis, based on the Band model)






