Supernovae shed light on GRBs

M. Della Valle (Capodimonte Obs. INAF-Napoli & ICRANet-Pescara)

Summary

- Supernova Taxonomy
- GRB-SN properties
- GRB and SN rates
- Conclusions

2. SNe & GRBs at z < 0.2

GRB	SN	Ζ	Ref.
GRB 980425	SN 1998bw	0.0085	Galama et al. 1998
GRB 060218	SN 2006aj	0.033	Campana et al. 2006 Pian et al. 2006
GRB 080109	SN 2008D	0.007	Soderberg et al. 2008 Mazzali et al. 2008
GRB 100316D	SN 2010bh	0.06	Bufano et al. 2012 Chornock et al. 2010 Cano et al. 2011 Margutti et al. 2013
GRB 030323	SN 2003dh	0.16	Hjorth et al. 2003 Stanek et al. 2003
GRB 031203	SN 2003lw	0.11	Malesani et al. 2004
GRB 130702A	SN 2013dx	0.15	D'Elia et al. 2014

Properties of GRB-SNe (broad-lined SNe-Ic)

Lack of H and He in the ejecta: SNe-Ic(b) Very broad features: large expansion velocity (0.1c) Kinetic energy (non-relativistic ejecta) ~ 10^{52} erg ≥ 10 larger than Usual CC-SNe Range of luminosity: in some case large ⁵⁶Ni mass ($\sim 0.5\pm0.2$ M_{\odot}) Explosions are aspherical (profiles of nebular lines O vs. Fe and

Polarization)

Progenitor Mass?

R136a⁻

yellow dwarf (Sun-like)

blue dwarf

Modeling lightcurves and spectra

743.9

lerg sul

Distant GRB/SNe?

Bjornsson et al. 2001

Della Valle et al. 2003

Sahu et al. 2000

Lazzati et al. 2005

Della Valle et al. 2006

Garnavich et al. 2003

GRB census > 0.2

GRB	SN	Ζ	Ref.
GRB 021202	SN 2002lt	1.002	Della Valle et al. 2003
GRB 050525A	SN 2005nc	0.606	Della Valle et al. 2006
GRB 101219B	SN 2010ma	0.55	Sparre et al. 2011
GRB 060729	SN no name	0.54	Cano et al. 2011
GRB 090618	SN no name	0.54	Cano et al. 2011
GRB 081007	SN 2008hw	0.53	Della Valle et al. 2008 Zhi-ping et al. 2008
GRB 091127	SN 2009nz	0.49	Cobb et al. 2010 Berger et al. 2011
GRB120714B	SN 2012eb	0.40	Klose et al. 2012
GRB 130427A	SN 2013cq	0.34	Melandri et al. 2014 Xu et al. 2013
GRB 120422A	SN 2012bz	0.28	Melandri et al. 2012

Berger et al. 2011 SN 2009nz @ z=0.49

Zhi-Ping et al. 2013 SN 2008hw @ z=0.53

SN 2002lt @ z=1

Fe, Ti, Mg

SN 1991bg

5000

Progenitor Mass?

R136a⁻

yellow dwarf (Sun-like)

blue dwarf

Fruchter et al. 2006

Kelly et al. 2008 find that local SNe-Ic erupt in the brightest regions of their hosts (like GRBs, see Fruchter et al. 2006)

ion of SNe	1 ★ GRB ○ II SN M>8 M>1 M>2 0.75 M>3 M>5 0.5 -	s e 0 0 0 0			
1998bw	2003dh	20031w	2006aj	2008D	
$40 \ \mathrm{M}_{\odot}$	35-40 M _☉	40-50 M _☉	20-25 M _☉	20-30 M _☉	
Maeda et al. 2006	Mazzali et al. 2003	Mazzali et al. 2006	Mazzali et al. 2006	Tanaka et al. 2008	
	Fraction of Light				

Long-GRBs have ~ 40 M_{\odot} Raskin et al. 2008

3. Ingredients for a "healthy" SN and GRB rates

Cooking GRB and SN rates

Main Courses

 Fraction of SNe-Ib/c which produces (long)GRBs

Main Courses

- Fraction of SNe-Ib/c which produces (long)GRBs
- HL-GRB vs LL-GRB rates

Main Courses

- Fraction of SNe-Ib/c which produces (long)GRBs
- HL-GRB vs LL-GRB rates
- Fraction of SNe-Ib/c which produces HNe

What is the rate of SNe-Ib/c?

Asiago Survey (Cappellaro et al. 1999)

galaxy	N. SNe*				rate [SNu]			
type	Ia	Ib/c	II	Ia	Ib/c	II		
E-SO	22.0			0.18 ± 0.06	< 0.01	< 0.02		
S0a-Sb	18.5	5.5	16.0	0.18 ± 0.07	0.11 ± 0.06	0.42 ± 0.19		
Sbc-Sd	22.4	7.1	31.5	0.21 ± 0.08	0.14 ± 0.07	0.86 ± 0.35		
Others#	6.8	2.2	5.0	0.40 ± 0.16	0.22 ± 0.16	0.65 ± 0.39		
All	69.6	14.9	52.5	0.20 ± 0.06	0.08 ± 0.04	0.40 ± 0.19		

Rate for Ib/c: 0.152 ± 0.064 SNu

Guetta & DV 2007

 1.8×10^4 SNe-Ibc Gpc⁻³ yr⁻¹ $\rightarrow 1.1 \times 10^4$ up to 2.6×10^4

What is the rate of SNe-Ib/c?

Lick Survey (Li et al. 2011)

Rate	SN Ia	SN Ibc	SN II
Early(fiducial; SNuK) Late(fiducial; SNuK) Early(LF-average; SNuK) Late(LF-average; SNuK)	$\begin{array}{c} 0.064\substack{+0.008\\-0.007}(\substack{+0.013\\-0.007}(\substack{-0.013\\-0.012})\\ 0.074\substack{+0.006\\-0.012}\\0.048\substack{+0.006\\-0.005}(\substack{+0.010\\-0.010})\\0.065\substack{+0.006\\-0.010}(\substack{+0.010\\-0.010})\end{array}$	$\begin{array}{c} 0.008\substack{+0.006\\-0.004}\begin{pmatrix}+0.002\\-0.002\end{pmatrix}\\ 0.096\substack{+0.010\\-0.009}\begin{pmatrix}+0.018\\-0.018\end{pmatrix}\\ 0.006\substack{+0.004\\-0.003}\begin{pmatrix}+0.002\\-0.002\end{pmatrix}\\ 0.083\substack{+0.009\\-0.008}\begin{pmatrix}+0.016\\-0.016\end{pmatrix}\end{array}$	$\begin{array}{c} 0.004^{+0.003}_{-0.002}(\substack{+0.001\\-0.002}(\substack{-0.001\\-0.001})\\ 0.172^{+0.011}_{-0.036}(\substack{+0.045\\-0.002}(\substack{+0.001\\-0.001})\\ 0.003^{+0.002}_{-0.001}(\substack{+0.039\\-0.009}(\substack{+0.039\\-0.031})\end{array}$
Vol-rate $(10^{-4} \text{ SN Mpc}^{-3} \text{ yr}^{-1})$	$0.301\substack{+0.038\\-0.037}(\substack{+0.049\\-0.049})$	$0.258\substack{+0.044\\-0.042}(\substack{+0.058\\-0.058})$	$0.447^{+0.068}_{-0.068}(^{+0.131}_{-0.111})$

Rate for Ib/c: 2.6 x 10⁴ SNe-Ibc Gpc⁻³ yr⁻¹ 2.2 x 10⁴ \rightarrow 3 x 10⁴ SNe-Ibc Gpc⁻³ yr⁻¹

What is the rate of (long) GRBs?

- GRB Gpc⁻³ yr⁻¹
- 1.5 Schmidt 1999
- 0.15 Schmidt 2001
- **0.5** Guetta et al. 2005
- **1.1** Guetta & DV 2007
- 1.1 Liang et al. 2007
- > 0.5 Pelangeon et al. 2008
- 1.3 Wanderman and Piran

Sample	Rate $(z = 0)^1$ Gpc ⁻³ yr ⁻¹	L* [50–300] keV 10 ⁵¹ erg/s	<i>a</i> ₁	<i>a</i> ₂	χ^2 /d.o.f. ³
GBM	$0.5^{+0.3}_{-0.2}$	$5.5^{+1.5}_{-2}$	$0.3^{+0.1}_{-0.5}$	$2.3^{+0.6}_{-0.3}$	1.1
BATSE	$1.0^{+0.2}_{-0.4}$	$4^{+2}_{-1.5}$	$0.1^{+0.3}_{-0.1}$	2.6+0.9	1.1
Swift	$0.6^{+0.3}_{-0.1}$	$3.3^{+2.5}_{-0.5}$	$0.1^{+0.3}_{-0.1}$	$2.7^{+1}_{-0.4}$	0.95

What is the local rate of (long) GRBs?

What is the fraction of SNe-Ib/c which produces (long)GRBs ?

Rate for Ibc: 2.4 x 10⁴ SNe-Ibc Gpc⁻³ yr⁻¹ GRB rate: 0.7 GRB Gpc⁻³ yr⁻¹

What is the fraction of SNe-Ib/c which produces (long)GRBs ?

Rate for Ibc: 2.4 x 10⁴ SNe-Ibc Gpc⁻³ yr⁻¹ GRB rate: 0.7 GRB Gpc⁻³ yr⁻¹

<fb⁻¹> ~500 <fb⁻¹> ~75 <fb⁻¹> < 10 <fb⁻¹> ~ 1

(Frail et al. 2001)
(Guetta, Piran & Waxman 2004)
(Guetta & DellaValle 2007)
(Ruffini et al. 2006)

 $(\vartheta \sim 4^\circ)$ $(\vartheta \sim 9^\circ)$ $(\vartheta > 25^\circ)$ for sub-lum GRBs $(\vartheta \sim 4 \pi)$

To Beaming, or not to Beaming

GRB 080319B

In some cases there is not evidence for beaming, i.e. an achromatic break was not detected (see Campana et al. 2007).

The faster the narrower: characteristic bulk velocities and jet opening angles of Gamma Ray Bursts

G. Ghirlanda^{1*}, G. Ghisellini¹, R. Salvaterra², L. Nava³, D. Burlon⁴, G. Tagliaferri¹, S. Campana¹, P. D'Avanzo¹, A. Melandri¹ (2013)

1° < ϑ < 30° ϑ_{peak} ~ 4°

What is the fraction of SNe-Ib/c which produces (long)GRBs ?

Rate for Ibc: 2.4 x 10⁴ SNe-Ibc Gpc⁻³ yr⁻¹ GRB rate: 0.7 GRB Gpc⁻³ yr⁻¹

<fb⁻¹> ~500 <fb⁻¹> ~75 <fb⁻¹> < 10 <fb⁻¹> ~ 1

(Frail et al. 2001) (Guetta, Piran & Waxman 2004) (Guetta & DellaValle 2007) (Ruffini et al. 2006) $(\vartheta \sim 4^\circ)$ $(\vartheta \sim 9^\circ)$ $(\vartheta > 25^\circ)$ for sub-lum GRBs $(\vartheta \sim 4 \pi)$

GRB/SNe-Ibc: 1.5%-0.003%

TABLE 2
LATE-TIME RADIO OBSERVATIONS OF TYPE IBC SUPERNOVAE

SN name	Host Galaxy	Distance ^a (Mpc)	Explosion Date ^b (UT)	IAUC (#)	Date Obs (UT)	$\frac{\Delta t^{c}}{(days)}$	Flux density ^d (µJy)
1983N	NGC 5236	7.2	1983 Jun 26	3835	2003 Oct 17	7416	±124
1985F	NGC 4618	7.7	1985 May 14	4042	2003 Oct 17	6730	±37
1987M	NGC 2715	18.9	1987 Aug 31	4451	2003 Oct 17	5891	± 34
1990B	NGC 4568	32.0	1989 Dec 23-1990 Jan 20	4949	2003 Oct 17	5032	± 24
1990U	NGC 7479	33.7	1990 Jun 28-Jul 27	5063	2003 Oct 17	4845	± 44
1991A	IC 2973	45.5	1990 Dec 6-13	5178	2003 Oct 17	4695	± 35
1991D	Anon.	173	1991 Jan 16	5153	1992 Oct 11	633	± 49
1991N	NGC 3310	14.0	1991 Feb 20-Mar 29	5227	2003 Oct 17	4604	±59
1991ar	IC 49	65.0	1991 Aug 3	5334	2003 Oct 17	4458	± 30
1994I	NGC 5194	6.5	1994 Apr 1-2	5961	2003 Oct 17	3486	± 42
1994ai	NGC 908	21.3	1994 Dec 8-16	6120	2003 Oct 17	3336	± 40
1996D	NGC 1614	68.1	1996 Jan 28	6317	2003 Oct 15	2818	± 153
1996N	NGC 1398	19.7	1996 Feb 16-Mar 13	6351	2003 Oct 15	2787	± 36
1996aq	NGC 5584	23.2	1996 Jul 30	6465	2003 Oct 17	2635	± 32
1997B	IC 438	44.3	1996 Dec 14	6535	2003 Oct 15	2498	± 33
1997C	NGC 3160	99.2	1996 Dec 18-1997 Jan 14	6536	2003 Oct 17	2481	± 37
1997X	NGC 4691	15.7	1997 Jan 16-Feb 2	6552	2003 Oct 17	2457	± 22
1997dc	NGC 7678	49.6	1997 Jul 22	6715	2003 Oct 17	2278	± 36
1997dq*	NGC 3810	14.0	1997 Oct 16	6770	2003 Oct 17	2192	± 30
1997ef*	UGC 4107	49.8	1997 Nov 16-26	6778	2003 Oct 17	2156	±33
1998T	NGC 3690	44.3	1998 Feb 8-Mar 3	6830	2003 Oct 17	2066	± 482
1998ey*	NGC 7080	69.0	1998 Nov 1-Dec 5	6830	2003 Oct 17	1794	± 32
1999bc	UGC 4433	90.2	1999 Jan 30	7133	2003 Oct 15	1721	± 25
1999di	NGC 776	70.2	1999 Jul 6	7234	2003 Oct 17	1564	± 35
1999dn	NGC 7714	39.7	1999 Aug 10-20	7241	2003 Oct 17	1524	± 42
1999ec	NGC 2207	38.9	1999 Aug 24	7268	2003 Oct 15	1515	± 45
1999eh	NGC 2770	27.6	1999 Jul 26	7282	2003 Oct 17	1544	± 19
2000C [†]	NGC 2415	53.8	1999 Dec 30-2000 Jan 4	7348	2003 Oct 17	1385	± 35
2000F	IC 302	84.5	1999 Dec 30-2000 Jan 10	7353	2003 Oct 15	1383	± 26
2000S	MCG -01-27-2	85.8	1999 Oct 9	7384	2003 Oct 17	1469	± 30

Soderberg et al. 2006 62 SNe-Ibc Bietenholz al. 2011 <u>59 SNe-Ibc</u>

GRB/SNe-Ibc <10%

Discovery of a Relati Gamma-ray Trigger

A. M. Soderberg¹, S.
R. A. Chevalier⁴, P. Chandra⁵,
V. Chaplin⁷, V. Connaughton⁷,
N. Chugai¹¹, M. D. Stritzinger¹²,
E. M. Levesque^{1,15}, J. E. Grindlay¹
P. A. Milne¹⁶, M. A. P. Torres¹

GRB/SNe-Ibc ~ 1/146 GRB/SNe-Ibc ~ 0.7%

< 5% at 99%

GRB/SNe-Ibc: 1.5%-0.003%

 Hz^{-1}

erg

Luminosity

Radio

SNe & GRBs at z < 0.1

GRB	SN	Z	E _{iso} (erg)
GRB 980425	SN 1998bw	0.0085	$\sim 10^{48}$
GRB 060218	SN 2006aj	0.033	$\sim 10^{50}$
GRB 080109	SN 2008D	0.007	~ 10 ⁴⁶
GRB 10031 <u>6D</u>	SN 2010bh	0.06	~ 10 ⁵⁰

LL-GRBs sample a volume 10⁶ smaller → Rate: up to x 10³ Gpc⁻³ yr⁻¹ (Della Valle 2005, Pian et al. 2006, Cobb et al. 2006, Soderberg et al. 2006, Liang et al. 2006, Guetta & Della Valle 2007, Amati et al. 2007)
SNe & GRBs at z < 0.1

GRB	SN	Ζ	D _{max}	Sky Cov.	$\Delta t (yr)$
GRB 980425	SN 1998bw	0.0085	170 Mpc	0.08	7
GRB 060218	SN 2006aj	0.033	160 Mpc	0.17	9
GRB 080109	SN 2008D	0.007	200 Mpc	0.17	9
GRB 100316D	SN 2010bh	0.06	268 Mpc	0.17	9

LL-GRBs Rate

- *LL-G*RBs counts (beppo-Sax) ~ 0.2 3.3 (1 σ) SkyCov +V_{max} + $\Delta t \rightarrow$ "observed" ~ 90 Gpc⁻³ yr⁻¹ (18 up to 300)
- *LL*-GRBs counts (Swift) ~ 1.3 6 (1 σ) \rightarrow SkyCov + V_{max} + $\Delta t \rightarrow$ "observed" ~ 65 Gpc⁻³ yr⁻¹ (48 up to 111)

LL-GRBs "observed" ~ 71 *GRBs Gpc*⁻³ yr⁻¹ (51 up to 104)

LL-GRBs Rate

- *LL-GRBs* counts (beppo-Sax) ~ 0.2 3.3 (1 σ) SkyCov +V_{max} + $\Delta t \rightarrow$ "observed" ~ 90 Gpc⁻³ yr⁻¹ (18 up to 300)
- *LL-GRBs* counts (Swift) ~ 1.3 6 (1 σ) \rightarrow SkyCov + V_{max} + $\Delta t \rightarrow$ "observed" ~ 65 Gpc⁻³ yr⁻¹ (48 up to 111)
- *LL-GRBs* "observed" ~ 71 GRBs Gpc⁻³ yr⁻¹ (51 up to 104)

<fb⁻¹>_{LL-GRBs}

1-2 GRB 060218 0>80° (Soderberg et al. 2006)
7 GRB 031203 0>30° (Malesani 2006)
10 statistic 0>25° (Guetta & Della Valle 2007)

LL vs. HL Rates

LL-GRBs ~ 71 x (1 ÷ 10) ~ 70 ÷ 700 *LL-GRBs* Gpc^{-3} yr⁻¹

 $(fb^{-1})_{HL-GRBs} \sim 75 \div 500$ HL-GRBs ~ 0.7 x $(fb^{-1}) \sim 50 \div 350 \ Gpc^{-3} \ yr^{-1}$ LL-GRB/HL-GRB < 15

On the Subclasses in *Swift* Long Gamma-Ray Bursts: A Clue to Different Central Engines

Ryo TSUTSUI¹, & Toshikazu SHIGEYAMA¹

GRB 130427A+SN 2013cq

25"

PFIP @ WHT [O II] at GRB redshift

П

Ν

Xu et al. 2013 Melandri et al. 2014 □ Testing the GRB-SN paradigm with the brightest "close" event; GRB 130427A T90=162s

- Recent detection of the very energetic (Eiso = 10⁵⁴ erg) "neraby" (z = 0.34) GRB030427A
- Unique occasion to test the GRB-SN connection for "cosmological" GRBs

Melandri et al. 2014

GRB 130427A

See also Perley et al. ArXiv 1307.4401

Half-opening angle In radians !!!

No jet-break \rightarrow limits on θ

$$\theta_{jet}^{\dagger} = 0.161 [t_{jet}/(1+z)]^{3/8} (n \eta_{\gamma}/E_{\gamma,iso,52})^{1/8}$$

(Schaefer 2006 formulation)

Assumptions

t_{jet} > 40 days (Perley et al.) 180 days XRT obs up to now

What is the fraction of SNe-Ib/c which produces HNe?

- 1. The observing log: epoch, limiting magnitude
- 2. Target apparent light curve: SN type, target distance
- 3. Galaxy sample: distance, type, inclination

How to compute rates

observing log

JAN FEB MARAPR MAYJUN JUL AGO SEP NOVDEC

$$m_{i,V}^{SN}(t) = M_B^{SN}(t_0) + \mu(z_i) + K_{BV}^{SN}(t_0) + A_V^G$$

 $t_0 = t / (1 + z)$

SN light curve in B absolute magnitude

galaxy distance modulus

B to V **K**-correction

galactic extinction

$$CT_i = L_i \int \tau_i^{SN}(m)\varepsilon(m) dm$$

time SN

stays at

galaxy luminosity *m-m*+dm

detection efficiency

 $r^{SN} = (1+z_i) \frac{N^{SN}}{\sum_{i=1}^{N} CT_i^{SN}}$

A simplified Scheme for a GRB-SN event

-an almost isotropic component carrying most energy 10⁵² erg and mass (~5-10M_o)

-highly collimated component 4°-10° for HL-GRBs containing a tiny fraction of the mass (10 ^{-4/-5} M_{\odot}) moving at $\Gamma \sim \times 10^{2-3}$

HL-GRBs/HNe: 20%-3%

4. Conclusions

GRBs are very rare phenomena (compared to SN explosions)

GRB/SNe-Ibc: 0.003%-1.5%Ibc/CC ~ 0.30GRB/CC-SN ~ $10^{-5} \div 5 \times 10^{-3}$

 $\frac{N(40M_{\odot}-120M_{\odot})}{N(8M_{\odot}-120M_{\odot})} \sim 0.1 \text{ (Salpeter IMF)}$

What causes some small fraction of CC-SNe to produce observable GRBs, while the majority do not?

Special conditions are requested to stars to be GRB progenitors:

i) to be massive ~ 30-50 M_{\odot} (Maeda et al. 2006; Raskin et al. 2008; Tanaka et al. 2008)

ii) H/He envelopes to be lost before the collapse of the core, i.e. the GRB progenitor is a WR star (Campana et al. 2006)

GRB 060218/SN 2006aj

Campana et al. 2006

SNe-CC size progenitors

Red Supergiant R~4x10¹³ cm

The radius of the progenitor of SN 2006aj → W-R Star

05 Jan 03

Blue Supergiant R~4x10¹² cm

Special conditions are requested to stars to be GRB progenitors:

i) to be massive ~ 30-50 M_{\odot} (Maeda et al. 2006; Raskin et al. 2008; Tanaka et al. 2008)

ii) H/He envelopes to be lost before the collapse of the core, i.e. the GRB progenitor is a WR star (Campana et al. 2006)

iii) low metallicity and star forming environments (Modjaz et al. 2008, Fruchter et al. 2006)

See also Modjaz et al. 2011

Special conditions are requested to stars to be GRB progenitors:

i) to be massive ~ 30-50 M_{\odot} (Maeda et al. 2006; Raskin et al. 2008; Tanaka et al. 2008)

ii) H/He envelopes to be lost before the collapse of the core, i.e. the GRB progenitor is a WR star (Campana et al. 2006)

iii) low metallicity and star forming environments (Modjaz et al. 2008, Fruchter et al. 2006)

iv) binarity (Panagia 1988 and Smartt et al. 2008 \rightarrow a significant fraction of SNe-Ibc progenitors are binaries)

Special conditions are requested to stars to be GRB progenitors:

i) to be massive ~ 30-50 M_{\odot} (Maeda et al. 2006; Raskin et al. 2008; Tanaka et al. 2008)

ii) H/He envelopes to be lost before the collapse of the core, i.e. the GRB progenitor is a WR star (Campana et al. 2006)

iii) low metallicity and star forming environments (Modjaz et al. 2008, Fruchter et al. 2006)

iv) binarity (Panagia 1988 and Smartt et al. 2008 \rightarrow a significant fraction of SNe-Ibc progenitors are binaries)

v) high rotation (Yoon et Langer 2005; Campana et al. 2008, Yoon et al. 2012)

Bifurcation of massive star evolution at low-metallicity

Yoon & Langer 05, Yoon et al. 06, Woosley & Heger 06, Yoon et al. 12

Special conditions are requested to stars to be GRB progenitors:

i) to be massive ~ 30-50 M_{\odot} (Maeda et al. 2006; Raskin et al. 2008; Tanaka et al. 2008)

ii) H/He envelopes to be lost before the collapse of the core, i.e. the GRB progenitor is a WR star (Campana et al. 2006)

iii) low metallicity and star forming environments (Modjaz et al. 2008, Fruchter et al. 2006)

iv) binarity (Panagia 1988 and Smartt et al. 2008 → a significant fraction of SNe-Ibc progenitors are binaries)

v) high rotation (Yoon et Langer 2005; Campana et al. 2008, Yoon et al. 2012)

vi) asimmetryc explosion (Taubenberger et al. 2009; Maeda et al. 2008) Within Virgo Circle, in 5 years \rightarrow we should observe ~ 5 SNe-Ibc, about half of them useful for GWs hunting. Only ~ 0.3 HNe

Within 30 Mpc Circle, in 5 years \rightarrow we should observe about 1 HN and ~ 15 SNe-Ibc, about half of them useful for GWs hunting.

Open Issues

"Much ado about nothing": GRB 060614

Low redshift: z = 0.125 GRB060614 SN search?

Gehrels et al. 2006 Mangano et al. 2007

What is the rate of GRB 060614-like events?

Late time:

host galaxy

contribution

Upper limit:

(no variation)

 $M_V > -13.5 (3\sigma)$

Della Valle et al. 2006 (see also Gal-Yam et al. 2006 – Fynbo et al. 2006)

Scenarios without Supernova

1. Supranova \rightarrow SN occurs (months, years) before the GRB (Vietri & Stella 1998)

2. $NS \rightarrow QS$ (Berezhiani et al. 2003; Drago et al. 2008)

3. Vacuum Polarization around Kerr-BH (Ruffini 1998; Caito et al. 2008)

4. Binary merging mechanisms similar to those proposed to power short GRBs (Gehrels et al. 2006)

Scenarios with Supernova

-13.5

A low energy core-collapse supernova without a

P.A. Mazzali^{2,3}, J. Manteca⁴, S. tyunyan^{2,7}, V. P. Hentunen^{8,9}, M. Smartt¹

> SN 2008ha is the first faint, hydrogen deficient, lowenergy core-collapse supernovae ever detected.

Potential "dark SN" (GRB progenitor)?

GRB 060614: SN with small explosion energy \rightarrow low expansion velocity \rightarrow most ⁵⁶Ni falls back into the BH \rightarrow small ⁵⁶Ni mass in the ejecta \rightarrow < 10^{-4/-5} M_{\odot} ⁵⁶Ni \rightarrow "Dark Supernovae" (see DV et al. 2006, Nomoto et al. 2007 and Tominaga et al. 2007)
