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Introduction

It is widely accepted that NSs are born at the final stage of evolution of normal
stars of mass M ≥ 8 ∗M� in gravitational collapse of their cores. During
collapse, the matter of central layers is compressed to nuclear densities and
enriched by neutrons. As a result, a compact NS is created of mass M ∼ M�
and radius R ∼ 10km.



Structure

4 internal regions:

ρ0 = 2.8 ∗ 1014g/cm3



The cooling

I The cooling of a NS is accompanied by the loss of its thermal
energy which is mainly stored in the stellar core. The energy is
carried away through two channels:
1) by neutrino emission from the stellar body,
2) by heat conduction through the internal stellar layers
towards the surface, and further, by thermal emission of
photons from the surface.

I The nature of the cooling depends on many parameters of the
star: the equation of state of the inner layers, NS mass,
magnetic field, chemical composition of the surface layers, and
superfluidity of nucleons in the core, etc. Comparison of the
cooling theory with observations can impose restrictions on
these parameters.



Observations

I It has been understood since Greenstein & Hartke (1983) that
in presence of a sufficiently strong magnetic field, ≥ 1010G ,
the surface temperature of a neutron star (NS) will not be
uniform as is expected in the unmagnetized case.

I Page (1995) and Page & Sarmiento (1996) applied the
Greenstein & Hartke formula to explain the lightcurves of the
isolated thermally emitting NSs PSR 0833-45 (Vela), PSR
0656+14, PSR 0630+178 (Geminga) and PSR 1055-52,
considering dipolar field configurations.



Observations

I This result, that the geometry of the magnetic field in the
interior of the NS leaves an observable imprint at the surface,
potentially allows us to study the internal structure of the
magnetic field through modelling of the spectra and pulse
profile of thermally emitting NSs.



Formulation of the problem

I To analyse temperature distribution on the surface of NS we
have to obtain temperature distribution in the crust of NS
from the border region to the insulated surface.

I the heat flux density:qi = −λik
∂T

∂rk
I the current density ji = ene 〈vi 〉
I It is necessary to consider the tensor properties of the thermal

conductivity and electrical conductivity:
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5
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1) + BiBk(c10 −
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σik =
kTn

m
(x0δik − εiknBnb0 + BiBkz0), i , k = x , y , z



Analysis of previous work

I In previous works devoted to the kinetic coefficients in a
magnetized neutron star, the following approximation was used
for the coefficients of thermal and electric conductivity along
and across the magnetic field lines: (Flowers, Itoh 1975 ),
(Yakovlev, Urpin 1980)
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Isotherms

I Simulation of the isotherms in an isolated magnetized neutron
star by Perez-Azorin, Miralles, Pons 2005:

I The ratio for the coefficients along and across the magnetic

field lines:
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=
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.



Analysis of previous work

There are a lot of papers, devoted to kinetic coefficients of
magnetized plasma in Maxwell’s approximation, performed by
a number of authors: W. Marshall (1961), Bisnovatyi-Kogan
G.S.(1964) и R. Lansdorf(1959). The approximation obtained
in these papers for the coefficients along and across the
magnetic field lines for nondegenerate plasma is:
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New approximation

I We assume that for the degenerate case, we can obtain a more
complex ratio between the coefficients along and across the
magnetic field lines, that it was used in previous papers. For
large values of the magnetic field the value of the coefficient in
front of (ωτ) can be substantial.

I So we need to calculate coefficients of heat and electrical
conductivity by solving Boltzmann equation.

I Obtained result can be used for calculation of isotherm
geometry on the surface and in the crust of neutron star.



Boltzmann’s equation

I
∂f

∂t
+ ci

∂f

∂ri
+

e

m
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1
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εiklckBl)

∂f

∂ci
+ J = 0. (1)

I For collision integral we take into account only the binary
collisions: J = Jee + JeN ,

I Jee = 2m3/(2π~)3
∫

[f
′
f
′
1 (1− f )(1− f1)− ff1(1− f

′
)(1−

f
′
1 )]× geeWee(θ, gee)dΩdc1i ,

I JeN =
∫

[f
′
f
′
N(1− f )− ffN(1− f

′
)]× geNWeN(θ, geN)dΩdcNi .

I gee =| c1i − c2i | is relative velocity of colliding electrons.
geN is relative velocity of colliding electron and nuclei.

I Wee , WeN are differential cross sections for collisions of
particles with relative speed gee or geN , inclined at an angle θ
and lying after a collision in the solid angle dΩ.



solution

I The zero approximation for the distribution function:
f0 = [1 + exp mev2−2µ

2kT ]−1.

I The first approximation for the electrons: f = f0[1 + χ(1− f0)]

I The first approximation for the nuclei:fN = fN0 (1 + χN).

I χ and χN are linear and admits representation of the solution
in the form:

I χ = −Ai
∂ lnT
∂ri
− neDidi

G5/2
G3/2

,

I χN = −ANi
∂ lnT
∂ri
− nNDNidi

G5/2
G3/2



solution

I Functions AI ,ANi и DI ,DNi determine heat conductivity and
diffusion.

I It was shown by Bisnovatyi-Kogan (1964) that in the presence
of the magnetic field, we can seek Bi vectors Ai and ANi in
the form :

I Ai = A1vi + A2εijkvjBk + A3Bi (vjBj),

I ANi = A1
Nvi + A2

NεijkvjBk + A3
NBi (vjBj),

I Let’s introduce:
I ξ = A1 + iBA2,

I ξN = A1
N + iBA2

N



solution

I Generalized equation for ξ and ξN can be written in the form:
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I Solving this equation by polynomial expansion, analogous to
Sonine expansion, we obtain the following results



Results: coefficientsof tensor of heat conductivity and
electro conductivity

I For degenerate case:
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I For degenerate case:
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Relation of coefficients of heat- and electocunductivities
across and along magnetic fields lines for degenerate plasma.
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λ ⊥
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Conclusion

I In our work we have reconsidered the thermal conductivity of
electrons in magnetic field produced by electron - ion
scattering. The new coefficients can be used for calculation of
temperature distribution on the surface and in the crust of
magnetized neutron star. The temperature distribution can be
very useful in understanding of geometry of magnetic field the
the dense regions of the star.

I There are some ways of elaboration of our results such as
consideration of the quantum effects of particle interaction at
high magnetic fields.



Thank you for attention!


