Neutron rich matter

C. J. Horowitz, Indiana University

Supernovae and Gamma-Ray Bursts, Yukawa Inst., Kyoto, Oct. 2013

Neutron Rich Matter

- Compress almost anything to 10¹¹+ g/cm³ and electrons react with protons to make neutron rich matter. This material is at the heart of many fundamental questions in nuclear physics and astrophysics.
 - What are the high density phases of QCD?
 - Where did chemical elements come from?
 - What is the structure of many compact and energetic objects in the heavens, and what determines their electromagnetic, neutrino, and gravitational-wave radiations?
- Interested in neutron rich matter over a tremendous range of density and temperature were it can be a gas, liquid, solid, plasma, liquid crystal (nuclear pasta), superconductor (T_c=10¹⁰ K!), superfluid, color superconductor...

Supernova remanent Cassiopea A in X-rays

MD simulation of Nuclear Pasta with 100,000 nucleons

Neutron rich matter

- Theory: chiral effective field theory.
- Experiment: neutron skin thickness of ²⁰⁸Pb, and ⁴⁸Ca via parity violating electron scattering.
- Low density nonuniform matter:
 –Formation of nuclear pasta.
 –Neutrinosphere region in core collapse SN.

Chiral Effective Field Theory

- Expands interactions in powers of momentum over chiral scale.
- Predicts properties of *uniform* nuclear matter at *low* densities.
- Many body perturbation theory calculations now being improved with coupled cluster calculations by G. Hagen et al.
- Note that calculations of nuclear matter may only be applicable over a limited density range from $\sim 1/2\rho_0$

to $\sim \rho_0$.

- At higher densities chiral expansion may not converge.
- -At lower densities matter is nonuniform.

• All hadronic calculations of nuclear matter, for densities above ρ_0 , may have large uncertainties in three and more nucleon forces.

Energy of Neutron Matter at N3LO

- Supernova EOS of Lattimer-Swesty (LS180 or LS220) has too low neutron matter energy at low densities.
- H. Shen EOS based on RMF (TM1) has E increase too fast with density.
- Gang Shen EOS (FSU2.1) based on extensive mean field calculations using FSUgold interaction stiffened at high densities to support 2.1M_{sun} NS consistent with chiral calculations PRC83,065808 (2011).

Laboratory probe of neutron rich matter

PREX uses parity violating electron scattering to accurately measure the neutron radius of ²⁰⁸Pb.

This has important implications for neutron rich matter and astrophysics.

Parity Violation Isolates Neutrons

- In Standard Model Z⁰ boson couples to the weak charge.
- Proton weak charge is small: $Q_W^p = 1 - 4 \sin^2 \Theta_W \approx 0.05$
- Neutron weak charge is big:

 $Q_W^n = -1$

- Weak interactions, at low Q², probe neutrons.
- Parity violating asymmetry A_{pv} is cross section difference for positive and negative helicity electrons

$$A_{pv} = \frac{d\sigma/d\Omega_{+} - d\sigma/d\Omega_{-}}{d\sigma/d\Omega_{+} + d\sigma/d\Omega_{-}}$$

 A_{pv} from interference of photon and Z⁰ exchange. In Born approximation

$$A_{pv} = \frac{G_F Q^2}{2\pi\alpha\sqrt{2}} \frac{F_W(Q^2)}{F_{\rm ch}(Q^2)}$$

$$F_W(Q^2) = \int d^3r \frac{\sin(Qr)}{Qr} \rho_W(r)$$

 Model independently map out distribution of weak charge in a nucleus.

• Electroweak reaction free from most strong interaction uncertainties.

Donnelly, Dubach, Sick first suggested PV to measure neutrons.

Neutron radii from proton scattering

- Tamii et al. extract the electric dipole polarizability of ²⁰⁸Pb using small angle proton scattering.
 - Claim R_n - R_p = 0.156^{+0.025}_{-0.021} fm based on a *model dependent* correlation between polarizability and skin.
 - Fattoyev et al show that models with a larger range of R_n - R_p are consistent with polarizability (PRL**111**, 162501).
- Many model dependent extractions of neutron densities from proton elastic scattering. For example Terashima et al. (PRC77, 024317) modify NN amplitudes until ⁵⁸Ni has small R_n-R_p and then use amplitudes to extract R_n-R_p for Sn isotopes. Note, this procedure may depend on energy and nucleus.

PREX measures how much neutrons stick out past protons (neutron skin).

PREX in Hall A at JLab

First PREX result and future plans

- 1.05 GeV electrons elastically scattering at ~5 deg. from 208 Pb.
- $A_{PV}=0.66\pm0.06(stat)\pm0.014(sym)$ ppm
- •Neutron skin: $R_n R_p = 0.33^{+0.16}_{-0.18}$ fm
- •Future plans: **PREX-II** (approved 25 days) Run ²⁰⁸Pb again to accumulate more statistics. Goal: R_n to ±0.06 fm.
- •**CREX**: Approved follow on for 48 Ca with goal: R_n to ±0.02 fm.
- r_{skin}[⁴⁸Ca] (fm) •Lighter ⁴⁸Ca allows coupled cluster calculations to relate R_n to three neutron forces. Important isovector observable to bridge ab initio and density functional descriptions.

Density Dependence of EOS

- Pressure of neutron matter pushes neutrons out against surface tension ==> R_n-R_p of ²⁰⁸Pb determines P at low densities of about 2/3ρ₀ (average of surface and interior ρ).
- Radius of (~1.4 M_{sun}) NS depends on P at medium densities of ρ_0 and above.
- Maximum mass of NS depends on P at high densities.

 These three measurements constrain density dependence of EOS and possible pressure changes from phase transitions.

Low Density Nonuniform Matter

- Half of heavy elements (including gold) made in r-process.
- What makes all of the neutrons?
 - Neutrinos: ratio of n/p in supernova v driven wind set by rates of v capture.
 - Gravity: compresses matter until electron capture drives it n rich. Tidal forces during NS mergers can eject n-rich material.
- Follow fluid element in tidal tail as it decompresses (next pages).
- Matter ejecta so n rich that it undergoes robust r-process!

- r-process yield depends on:
 - How much material is ejected in a merger?
 Better numerical relativity simulations.
 - What is merger rate? Advanced LIGO will soon directly observe rate.

Simulation by Stephan Rosswog, University of Leicester. Visualisation by Richard West, UKAFF.

Nuclear Pasta Formation

- During NS merger tidal excitation decreases density: uniform nuclear matter -> nuclear pasta -> nuclei + n -> r-process. Decompression pasta (ms time scale, low Y_p).
- Gravitational collapse during SN increases density: ~ Fe nuclei -> nuclear pasta -> uniform nuclear matter -> neutron star. SN pasta (ms time scale, high Y_p).
- Cooling pasta as protoneutron star cools.
- Accretion, slow cooks new pasta on accretion time scales (thousands of years??). Accreted pasta.
- Pasta formation involves phase transitions between very different shapes. Cooking pasta is not so simple!

LES PÂTES / PASTA

We have started on pasta microphysics: thermal/ electrical conductivity, shear viscosity, neutrino opacity, dynamical response...

(Semi)classical pasta model

- Charge neutral system of n, p, and e. [e provide screening length λ for Coulomb.]
- Thermal wave length of heavy clusters much shorter than inter cluster spacing: semi-classical approx. should be good.
- n, p interact via 2-body pot: $H = K + \sum_{i < j} v(r_{ij})$ $v(r) = a \exp[-r^2/\Lambda] + b_{ij} \exp[-r^2/2\Lambda] + e_i e_j \exp[-r/\lambda]/r$
- Parameters a, $b_{pp}=b_{nn}$, b_{pn} , Λ fit to binding E and saturation density of nuclear matter, reasonable symmetry E...
- Simple model allows large MD simulations with 300,000+ nucleons, long simulation times 10⁷ + fm/c.
- Also QMD simulations by Watanabe et al, Quantum calculations by W. Newton ...

MDGRAPE-2 boards in past

Presently run on about 1000 cores for ~ few weeks

Porting to GPU based machines such as IU's new Big Red II

Simulation of pasta formation. ArXiv:1307.1678

51200
nucleons,
$$Y_p=0.4$$
,
 $T=1$ MeV,
 $\lambda=10$ fm,
 $\xi=2\times10^{-8}$
c/fm,
 $L_0=80$ fm
 $L=(1+\xi t)L_0$

n = 0.1000 fm-3

Andre Schneider

SN neutrinos and r-process nucleosynthesis

- Important possible site for the rprocess is the neutrino driven wind in core collapse supernovae.
- Ratio of neutrons to protons in wind set by capture rates that depend on neutrino / anti-neutrino energies.

 $\nu_e + n \rightarrow p + e \quad \bar{\nu}_e + p \rightarrow n + e^+$ $\Delta E = \langle E(\bar{\nu}_e) \rangle - \langle E(\nu_e) \rangle$

 Measure ΔE, difference in average energy for antineutrinos and neutrinos. If ΔE is large, wind will be neutron rich. If ΔE is small, wind will be proton rich and likely a problem for r-process.

Measure energy of both anti-nu (SK) and neutrinos (liquid argon?).

Present SN simulations find too few neutrons.

Neutrino Spectra

- The stronger the neutrino interactions, the longer a neutrino stays in thermal equilibrium with matter to lower densities and temperatures, and the lower is the emitted neutrino energy.
- Electron antineutrinos capture on protons while neutrinos capture on neutrons. Matter is neutron rich so neutrinos have larger opacity. Therefore electron neutrinos (red) are emitted with lower energy than antineutrinos (black).

 Binding energy shift (see below) increases antineutrino and decreases neutrino energies leading to a larger ΔE.

Binding Energy shift

- Proton in n rich matter more bound than n because of symmetry energy.
- Energy shift can be calculated exactly with virial expansion (with A. Schwenk). Find it is much larger than in some mean field models because of cluster formation.

$$\Delta U = U_n - U_p = \lambda^3 T(n_n - n_p)(b_{pn} - \hat{b}_n)$$

• Neutrino absorption cross section is increased by energy shift which increases energy and phase space of outgoing electron: ν_e +n -> p+e

$$\frac{\sigma_{\nu_e}(\Delta U)}{\sigma_{\nu_e}(0)} = \frac{(E_{\nu} + \Delta U)^2 [1 - f(E_{\nu} + \Delta U)]}{E_{\nu}^2 [1 - f(E_{\nu})]} \,.$$

- Effect opposite for anti-neutrino absorption and reduces cross section increasing E(anti-nu).
- Increases ΔE and makes wind somewhat more neutron rich. Probably not enough for r-process, but still important for nucleosynthesis!

Idea due to L. Roberts, my work with G. Shen, C. Ott, E. O'Connor

Recreating Neutrinosphere on Earth

- Much of the "action" in core collapse supernovae happens near the neutrinosphere at LOW densities where the matter may be nonuniform.
- Neutrinosphere where mean free path is size of system R~10 km = $(\sigma \rho)$ --> warm, low density gas (T ~ 5 MeV, density ~ ρ_0 /100)
- Properties of neutrinosphere matter (for example composition of light clusters 4He, 3He, 3H...) important for emitted neutrino spectra and nucleosyntheis of SN.
- Can study neutrinosphere like conditions with heavy ion collisions in lab.

Composition of intermediate velocity fragments in HI collisions: Data (blue squares) Kowalski et al, PRC **75**, 014601(2007). Our virial EOS is black.

In a peripheral HI collision, intermediate velocity fragments from warm low density region.

Femtonova collaboration

- Recreate neutrinosphere conditions with heavy ion collisions using radioactive beams.
- By comparing collisions with proton rich and neutron rich systems, extrapolate to very neutron rich neutrinosphere conditions.
- Measure composition, symmetry energy, equation of state,... of neutrinosphere matter.
- Allow more robust predictions of neutrino spectra and nucleosynthesis for core collapse SN.
- Workshop at ECT* in Trento, Italy, April 7-11, 2014.
- New members (HI experimentalists, astrophysicists, neutrino physicists...) welcome

Neutron Rich Matter

- Can be studied in lab. with radioactive beams and in Astrophysics with X-rays, neutrinos, gravitational waves.
- PREX uses parity violating electron scattering to accurately measure the neutron radius.
 - First result: $R_n R_p(^{208}Pb) = 0.33^{+.16}$ -.18 fm.
 - Plan to get more statistics for ²⁰⁸Pb, also
 2nd expt. on ⁴⁸Ca.
 - Many implications for astrophysics...
- Collaborators: D. Berry, M. Gorchtein, R. Michaels, J. Piekarewicz, G. Shen... Students: C. Briggs, J. Hughto, A. Schneider.
- Supported in part by DOE.