YIPQS long-term workshop

Supernovae and Gamma-Ray Bursts in Kyoto, 2013

Oct.14-Nov.15, 2013





# Probing Core Collapse with Binaries





#### Vicky Kalogera Northwestern U.



Е CENTER FOR INTERDISCIPLINARY EXPLORATION AND RESEARCH IN ASTROPHYSICS

# Key Questions

Can We Constrain the SN mechanism ?
 What is the Origin of SN kicks ?
 Do Black Holes Receive Kicks ?





# Key Questions

Can We Constrain the SN mechanism ?
 What is the Origin of SN kicks ?
 Do Black Holes Receive Kicks ?

Progenitor Mass at SN?
SN Kick Magnitude?







## Double Neutron Stars







NORTHWESTERN

UNIVERSITY

System

# Double Neutron Stars

95 % confidence

(1/1)

#### Wong et al 2010



NA (NA )

60 % confidence

 $(l_{1})$ 

Tauris & van den Heuvel 2004

NS-NS Formation Channel





С

Ε

Tauris & van den Heuvel 2004

NS-NS Formation Channel





С

Е









## Observational Constraints:

NS Masses, current A and e, PSR age
 Spin-Orbit Tilt Angle (for B193, B1534, J0737 only)
 Sky Location, Distance, Proper Motion













NS2 formed in an Fe core collapse supernova























































e=0.14







High mass X-ray Binary (Wind-fed)

Low mass X-ray Binary (Roche lobe overflow)







High mass X-ray Binary (Wind-fed)

Low mass X-ray Binary (Roche lobe overflow)

- Step 1:
- Step 2:
- Step 3:
- Step 4:







High mass X-ray Binary (Wind-fed)

Low mass X-ray Binary (Roche lobe overflow)

## Observational Constraints:

- BH companion L, Teff, and Mass
- BH Mass, Orbital Period
- Proper Motion, Radial Velocity
- Sky Location, Distance











## **BH XRB Results**

(Willems et al. 2005)

UNIVERSITY





## **BH XRB Results**

| System                                    | Observed Current<br>BH mass<br>(M⊙)                                              | Post-SN<br>BH mass<br>(M⊙)                      | Immediate<br>Progenitor mass<br>(M⊙)             | Natal Kick<br>(km/s)                       |  |
|-------------------------------------------|----------------------------------------------------------------------------------|-------------------------------------------------|--------------------------------------------------|--------------------------------------------|--|
| GRO J1655-40<br>(early-type, P>1d)        | 6.3 ± 0.5<br>(Greene et al. 2001)<br>5.4 ± 0.3<br>(Beer & Podsiadlowski 2002)    | 5.5 - 6.3<br>3.5 - 5.4<br>(Willems et al. 2005) | 5.5 – 11.0<br>3.5 – 9.0<br>(Willems et al. 2005) | 30 − 160<br>≤ 210<br>(Willems et al. 2005) |  |
| <b>XTE J1118+480</b><br>(late-type, P<1d) | 8.0 ± 2.0<br>(McClintock et al. 2001, Wagner<br>et al. 2001, Gelino et al. 2006) | <b>6.0 – 10.0</b> (Fragos et al. 2009)          | <b>6.5 – 20.0</b> (Fragos et al. 2009)           | <b>80 – 310</b><br>(Fragos et al. 2009)    |  |
| M33 X-7<br>(wind-fed, H-rich)             | <b>13.5 – 20.0</b><br>(Orosz et al. 2007,<br>Valsecchi et al.2010)               | <b>13.5 – 14.5</b><br>(Valsecchi et al.2010)    | <b>15.0 – 16.1</b><br>(Valsecchi et al.2010)     | <b>10 – 850</b><br>(Valsecchi et al.2010)  |  |
| <b>Cygnus X-1</b><br>(wind-fed, H-rich)   | <b>14.81 ± 0.98</b><br>(Orosz et al. 2011)                                       | 13.8 – 15.8<br>(Wong et al. 2012)               | <b>15.0 – 20.0</b><br>(Wong et al. 2012)         | ≤ 77<br>(Wong et al. 2012)                 |  |
| IC 10 X-1<br>(wind-fed, He-rich)          | <b>25 — 39</b><br>(Wong et al. 2013)                                             | <b>25 — 39</b><br>(Wong et al. 2013)            | <b>32 - 60</b><br>(Wong et al. 2013)             | ≤ 130<br>(Wong et al. 2013)                |  |



Some BHs must have received a kick at formation

СІ

Ε

A

## Probing the Kick Mechanism?

#### What do BH Kick Magnitudes Correlate with?

- BH mass?
- He-star mass?
- mass loss at core collapse? (absolute/fractional?)

#### What is the underlying shape of the global correlation?

Can we probe the kick mechanism?





## Probing the Kick Mechanism?

### What do BH Kick Magnitudes Correlate with?

#### BH mass?

He-star mass?

mass loss at core collapse? (absolute/fractional?)



#### best f(M<sub>He</sub>):

# Maxwellian kick distribution with:



CIERA

## Probing the Kick Mechanism?

## What do BH Kick Magnitudes Correlate with?

#### BH mass?

He-star mass?

mass loss at core collapse? (absolute/fractional?)









#### If kick imparts only linear momentum: PSRs A and B should be closely aligned







Spin-Orbit Tilts Measured:

PSR A: < 14 deg (Ferdman et al. 2008) PSR B: 130 +- 1.3 deg (Lyutikov & Thompson 2005; Breton et al. 2008)







Spin-spin misalignment:

requires AM production during SN collapse
 if spin & kick linked physically,
 an off-center `bulk' kick is required too (~2-5km)





## All Thanks to:

1- 12

Will Farr



#### Tassos Fragos





Francesca Valsecchi

Kyle Kremer



#### **Bart Willems**



Tsing-Wai Wong

#### SIMONS FOUNDATION







| System                       | $lpha^{ m a}$ | $\delta^{\mathrm{b}}$ | D <sup>c</sup> | $\mu_{lpha}{}^{ m d}$ | $\mu_{\delta}{}^{e}$ | $\tau_c{}^{\mathrm{f}}$ | $M_1^{g}$              | $M_2^{h}$                 | $A_{\rm cur}{}^{\rm i}$ | $e_{\rm cur}{}^{\rm j}$ | $\theta_t^{k}$    |
|------------------------------|---------------|-----------------------|----------------|-----------------------|----------------------|-------------------------|------------------------|---------------------------|-------------------------|-------------------------|-------------------|
| PSR B1534+12 <sup>r1</sup>   | 15 37 09.96   | 11 55 55.55           | 1.02           | 1.34(1)               | -25.05(2)            | 250                     | 1.3332(10)             | 1.3452(10)                | 3.28                    | 0.274                   | $25(155) \pm 3.8$ |
| PSR B1913+16 <sup>r2</sup>   | 19 15 28.00   | 16 06 27.40           | 8.3(1.4)       | -3.27(35)             | -1.04(42)            | 110                     | 1.4408(3)              | 1.3873(3)                 | 2.80                    | 0.617                   | $18(162) \pm 6$   |
| PSR J0737–3039 <sup>r3</sup> | 07 37 51.25   | -30 39 40.71          | 1.15           | -3.82(62)             | 2.13(23)             | 210                     | 1.337(5)               | 1.250(5)                  | 1.26                    | 0.0878                  | <15 <sup>1</sup>  |
| PSR J1518+4904 <sup>r4</sup> | 15 18 16.80   | 49 04 34.25           | 0.625          | -0.67(4)              | -8.53(4)             | 20000                   | $0.72^{+0.51}_{-0.58}$ | $2.00^{+0.58}_{-0.51}$    | 24.7                    | 0.249                   | • • •             |
| PSR J1756–2251 <sup>r5</sup> | 17 56 46.63   | -22 51 59.40          | 2.5            | -0.7(2)               |                      | 443                     | 1.312(17)              | $1.258_{-0.017}^{+0.018}$ | 2.70                    | 0.181                   |                   |
| PSR J1811–1736 <sup>r6</sup> | 18 11 55.03   | -17 36 37.70          | 6.0            | •••                   | •••                  | 1830                    | $1.62^{+0.22}_{-0.55}$ | $1.11_{-0.15}^{+0.53}$    | 40.7                    | 0.828                   |                   |
| PSR J1829+2456 <sup>r7</sup> | 18 29 34.60   | 24 56 19.00           | 1.2            |                       |                      | 12400                   | $1.14_{-0.48}^{+0.28}$ | $1.36^{+0.50}_{-0.17}$    | 6.36                    | 0.139                   | •••               |
| PSR J1906+0746 <sup>r8</sup> | 19 06 48.67   | 07 46 28.60           | 5.4            |                       |                      | 0.112                   | 1.365(18)              | 1.248(18)                 | 1.75                    | 0.0853                  |                   |

Table 1Parameters of the Eight Known DNS in Our Galaxy





#### **Step 2: Orbital Dynamics at Core Collapse**

- random magnitude and direction of natal kick
- map post-SN binary parameters to pre-SN parameters using conservation of E
- constraints:
  - a) survival of the binary
  - b) mass ratio between NS1 and immediate progenitor of NS2
  - c) spin-orbit misalignment angle (for



