JGW-G1301945-v2

Status of KAGRA and for the Detection of Gravitational Waves from SNe

Nobuyuki Kanda (Osaka City U.) KAGRA collaboration

30th Oct. 2013, Conference on Supernovae

YIPQS Ion-term workshop "Supernovae and Gamma-Ray Bursts in Kyoto, 2013"

Plan of Talk

Gravitational Wave

- What ?
- How to detect
- KAGRA
 - Conceptual Design
 - Schedule
 - <u>Construction Status</u>

GW from SNe

- Possible Radiation Scenario
- <u>What can be obtained from GW detection?</u> (GW and GRB)

What is Gravitational Wave 2

Gravity distorts the space-time?

Einstein Eq. 1

$$R_{\mu\nu} - \frac{1}{2} g_{\mu\nu}R = -\kappa T_{\mu\nu}$$

metric tensor "flat" space-time (Minkowski)

"curved (distorted)" space-time

$$g_{\mu\nu} \neq \eta_{\mu\nu}$$

small perturbation 'h' --> Waves

$$g_{\mu\nu} = \eta_{\mu\nu} + h_{\mu\nu}$$

$$\left(\nabla^2 - \frac{1}{c^2}\frac{\partial^2}{\partial t^2}\right) h_{\mu\nu} = 0$$

flat space-time

• Source

change (time derivative) of quadrupole moment of mass distribution

$$I_{\mu\nu} = \int dV (x_{\mu}x_{\nu} - \frac{1}{3}\delta_{\mu\nu}r^2)\rho(\vec{r})$$

• Amplitude

inversely proportional to the distance between source and observer h_{mn}

$$\mu\nu = \frac{2G}{Rc^4}\ddot{I}_{\mu\nu}$$

• Energy

total energy is given as : $E_{GW} \sim \frac{G}{5c^5} < \ddot{I}_{\mu\nu} \ddot{I}^{\mu\nu} >$

Need direct measurement.

Why direct measurement ?

• We have to test in '**strong**' gravity field !

Past experimental GR tests had been done in weak gravity field (in Solar system)

Direct measurement of wave property is important as the test of a fundamental interaction .

- GW waveform carry information of its sources New probe for astrophysics and cosmology
- Tagging GW events = seeing sources
 Gravitational Wave Astronomy

Possible sources are also attractive for us: black-hole, neuron star, supernovae, cosmic string, etc...

Possible GW sources

Event Like

It will occur suddenly. Sometime it can be luminous!

- Compact Binary Coalescence (Neutron Star-NS, NS-Blackhole, BH-BH)
- Supernova (Stellar-core collapse)
- BH QNM
- Pulsar glitch

Continuous

It exists anywhere, anytime in our universe ...

- Rotating Pulsar
- Binary
- Stochastic Background

(+Unknown sources)

typical target : $h \lesssim 10^{-22} - 10^{-22}$

GW signal (example: NS-NS Coalescence) KAGRA

GW signal (example : Supernova) KAGRA

amplitude [x 10⁻²⁰

- Supernova (type II) will emit short duration GW (Burst wave) according to various processes in it.
 - Rotational Core collapse (Bounce)
 - Convection
 - Proto-neutron star formation and g-mode instability
 - Standing-Accretion-Shock Instability

DFM wave form example (8.5kpc)

Dimmermeier et al.

How to detect GW

How to detect GW

9

flat space-time

distorted space-time

Free Test Masses & Laser interferometer GW

Schematic Figure

- Free mass --> suspended mirror
 To integrate strain 'h' --> long baseline arms.
- Limited size --> Folding arms / Storage cavity
- Against noises --> high power laser
 Cooling
 - etc..

<-- mirror and suspension of CLIO interferometer (prototype of KAGRA)

Global Network of GW detectors

Underground

- in Kamioka, Japan
- Silent & Stable environment
- Cryogenic Mirror
 - 20K
 - sapphire substrate
- 3km baseline

Plan

- 2010 : construction started
- 2015 : first run in normal temperature
- 2018 (or late 2017)- : observation with cryogenic mirror

- Underground
 - in Kamioka, Japan
 - Silent & Stable environment
- Cryogenic Mirror
 - 20K
 - sapphire substrate
- 3km baseline

Plan

- 2010 : construction started
- 2015 : first run in normal temperature
- 2018 (or late 2017)- : observation with cryogenic mirror

Underground

- in Kamioka, Japa
- Silent & Stable environment

Cryogenic Mirror -

- 20K
- sapphire substrate

3km baseline

Plan

- 2010 : construction started
- 2015 : first run in normal temperature
- 2018 (or late 2017)- : observation with cryogenic mirror

Underground

- in Kamioka, Japa
- Silent & Stable environment

Cryogenic Mirror -

- 20K
- sapphire substrate

3km baseline

Plan

- 2010 : construction started
- 2015 : first run in normal temperature
- 2018 (or late 2017)- : observation with cryogenic mirror

viewgraph by K.Kuroda

KAGRA Collaboration in the world

- Research organizations of laboratories and universities are 41 in Japan and 38 in overseas
- 158 researchers in Japan and 67 in abroad,
 225 members in total

Sensitivity Limit of KAGRA

h ~ factor x 10⁻²⁴ [/ \sqrt{Hz}] for observation band

Detection Range

KAGRA's NS-NS

Schedule & Target

IKAGRA and bKAGRA

viewgraph by T.Kajita

 Simple interferometer with: room temperature operation, 10W class laser, and no power and signal recycling
 However, full end-to-end (relatively short) observation, in order to experience the operation and to understand the potential problems as soon as possible.

- Advanced interferometer with: power and signal recycling, but still room temperature operation.
- Full bKAGRA with; power and signal recycling, cryogenic sapphire mirrors, and >150W laser.

tunnel

Tunnel subgroup brief report for the KAGRA international collaboration meeting on 2013/10/09.

Tunnel Excavation

viewgraph by T.Kajita

Vibration isolation and cryostat

Cryostat

viewgraph by T.Suzuki

D. Chen

Cryostat #1, #2, #4 : Move to the Miyakawachou Storage (7/27, 7/28)

Cryostat #3 : Extra cooling test of 1/2 payload with dummy baffles in July and Aug. Vibration measurement by Roma and ICRR accelerometers. Waiting for transportation to Miyakawachou Storage.

Y. Sakakibara

Clean Booth Plan for Cryostats

Optics (Mirror, Buffle)

Sapphire test-polish was successful.

viewgraph by N.Mio

Example of a large baffle

#3 Narrow-angle baffle Material: A5052

iKAGRA Data System

The equipments will be installed at Kamioka and Kashiwa by the end of February 2014.

A. Inside Mine

B. Analysis Building at Kamioka

27

C. Kashiwa Campus

IKAGRA Data System

The equipments will be installed at Kamioka and Kashiwa by the end of February 2014.

A. Inside Mine

B. Analysis Building at Kamioka

C. Kashiwa Campus

Amount of Data

phase	duration	data rate / duty	total expected amount	from -> to
iKAGRA	about 2~3 months at <u>end of 2015</u>	20MB/s / 100%	100 TiB	Kamioka -> Kashiwa
		1MB/s / 100%	5TiB	Kamioka -> Osaka City U./Osaka U.
commissioning	2016-2017	20MB/s / ?(5~10%)	?	Kamioka -> Kashiwa
		1MB/s / ?(5~10%)	?	Kamioka -> Osaka City U./Osaka U.
bKAGRA	2017 - (end of KAGRA)	20MB/s / 100%	3PB / 5yrs	Kamioka -> Kashiwa
		1MB/s / 100%	150 TiB / 5yrs	Kamioka -> Osaka City U./Osaka U.

iKAGRA : normal temperature operation at end of 2015 bKAGRA : cryogenic hi-sensitivity observation after mid of 2017 or 2018 Data Analysis

Data analysis activities Current activities: ➢ Development of data analysis package for KAGRA ➢ We have determined the name of data analysis

library for KAGRA.

"KAGALI": KAGRA Algorithmic Library

> We are now writing the data analysis white paper.

GW from supernovae

Supernova will emit GW in various phase of its development.

- core bounce
- convection
- formation of proto-neutron star g-mode oscillation
- neutrino emission
- accretion
 - cf: SASI (standing-accretion-shock instability)
- etc.

GW from supernovae

Supernova will emit GW in various phase of its development.

- core bounce
- convection
- formation of proto-neutron star g-mode oscillation
- neutrino emission
- accretion

- cf: SASI (standing-accretion-shock instability)
- etc.

What is a key feature from the view of GW detection and analysis ?

GW waves : view of event detection ... KAGRA'

Features	Supernovae	Compact Binary Coalescence
GW waveform	"Burst" various prediction, but is NOT well-known or hard to give waveform analytically	"Chirp" Post-Newton + "Merger" Numerical Relativity + "Ringdown" Perturbation of BH (analytical + NR waveforms)
Detection (Signal Identification)	 •Excess power filter (Integration of signal power), •Time-Frequency analysis (Sonogram by Short-FFT, Wavelet etc.) 	Matched filter between signal and templates (Winer optimal filter)
Typical Range for current detectors.	≤1Mpc	~200 Mpc
Follow-ups / Counterparts	EM (visible-infrared , X-ray, Gamma-Ray), Neutrino	EM (visible-infrared, X-ray, Gamma-Ray), Neutrino

Detectability of GW from SNe KAGRA

Typically, the detection range is roughly ≤ 1 Mpc.

Excess power filter

- Integrate signal power between wider frequency band around certain arrival time.
- It may give most high S/N.
- Structure (waveform, accurate timing) of the signal might be lost.

Time-Frequency analysis

- There are many methods ! (Sonogram/Spectrogram with Short-FFT, Wavelet etc.)
- These are looks fine to give information in *t-f* domain.

example : ROC for the SNe at Galactic center in KAGRA study (See M.Asano's poster [P49])

Obtained from GW of SNe

What can be obtained from GW observation of SNe ?

- Simply three things :
 - Structure
 - Dynamics
 - Kinematics

Structure

If we will get the GW,

the SN is not spherical symmetry !

- There are some asymmetric development of SNe, at core? shock? convection?(density or temperature), etc.
- It is simply happy scenario for both GW experimentalists and theorists.

If we will NOT found any GW at close SN event(s), the SN might be completely symmetric.

• ...It is terrible scenario for experimentalists (and current simulation predictions also!)..., but unhoped-for exciting situation...

It may hard to proof really no GW or detector disorder...

Structure

If we will get the GW,

the SN is not spherical symmetry !

- There are some asymmetric development of SNe, at core? shock? convection?(density or temperature), etc.
- It is simply happy scenar GW or no-GW is simple, theorists. however, have to be confirmed

If we will NOT found a

for current our works.

- the SN might be completely symmetric.
- ... It is terrible scenario for experimentalists (and current simulation predictions also!)..., but unhoped-for exciting situation...

It may hard to proof really no GW or detector disorder...

Dynamics

When strong GW will be emitted ?

- GW before neutralization burst suggest that the core is highly rotating.
- GW after neutralization burst, core does not rotate.

Simulation by Y.Suwa (drawn by T.Yokozawa)

Timing analysis is important !

Timing of

- GW
- Neutrino

• EM

are important to know the dynamics of SN.

e.g. Neutrino and GW timing

KAGRA

Timing analysis is important !

Timing of

- GW
- Neutrino

► EM

GW

are important to know the dynamics of SN.

~ 05

219

e.g. Neutrino and GW timing

KAGRA

See poster by T.Yokozawa in detail [P08]

Kinematics

- Where dominant GW power come from ? core-bounce? convection? SASI?
- Does Magnet-Hydro Dynamics induce large mass ejecta ?

GW might suggest what is a dominant process to supply explosion energy of 10⁵¹ erg.

Kinematics

- Where dominant GW power come from ? core-bounce? convection? SASI?
- Does Magnet-Hydro Dynamics induce large mass ejecta ?

Obtained from GW of SNe! KA

• Structure : Symmetry or NOT

- Dynamics : Rotating or NOT
- Kinematics : Where come from explosion energy 10⁵¹ erg

Important key is 'timing' analysis. (GW itself and between counterparts)

GW and GRB

KAGRA

KAGRA also starts cooperation ... KAGRA

"New Developments in Astrophysics Through Multi-Messenger Observations of Gravitational Wave Sources" (Head : T.Nakamura)

- by Grant-in-Aid for Scientific Research on Innovative Areas, MEXT Japan
- Invite possible counterparts / follow-up channels of Japan !!
- X-ray and Gamma-ray
- **Optical**, Infrared and Radio
- Neutrino
- GW low latency analysis
- Theory for GW and counterpart

The project started in 2012.

KAGRA and these partners are 'open-minded' for also international partners.

Summary

- First GW detection is near future !
- KAGRA construction steadily iKAGRA ~ end of 2015
 bKAGRA 2018~ (or late 2017~)
- Supernova is promising GW source.
 GW is expected to give rich information for SN - its structure, dynamics and kinetics.