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Qutline

® The challenge of modeling the many facets of
SNR broadband emission

® What a physical emission model needs to account for

o What“hurdles” from observation data it must overcome
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Behold!

The Multi-wavelength Era has come

» L

lo build a truly succes: sful mnodel of SNR emission:
DI

dynergy ofr all available broadband data AND

mnodeling by a good physical model are the keys



SNRs are complex stuff
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SNRs are complex stuff
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G Proaenitor star

For young SNRs
all these are linked together
in non-linear fashion!

We need multi-A info and
. comprehensive models |
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Any serious broadband emission model of

SNRs must overcome a number of
Hurdles from Observations:

Matching FS, CD and RS radii

Matching shock speeds (expansion rates)
Non-thermal spectrum (radio - TeV)

Multi-A morphology
d>pectral variation In space-time

i

~ Thermal spectrum (ionization, composition)
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Code is inexpensive
Perfect for deep parameter search

SNR
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_ HL+ Ap)

== Non-thermal = Synch

Broadband T B |
Spectrum

Check consistency of:
e Radio to TeV flux
e Spectral shapes

* Inferred CR energetics
* Required B-field, CSM, Esn

~ log,, ( E? F(E) [GeV/cm® /s])

But often, more than
one acceptable models exist
(e.g. hadronic vs leptonic)

log,, ( E [GeV])



Thermal X-ray

can constrain B SNRVela )r.
Gamma-ray origin i

Synch

{ Leptonic §

In young SNRs, thermal £ ASCA

X-ray emission is ‘
coupled to their

broadband emission!

Very important:
Predicted thermal flux
must not exceed

observed X-ray flux .
= another constraint [ |§}05< E [keO\}?)\ -




Radial emission profiles probe
Y-ray origin & DSA efficiency

Radio, X-ray and
TeV morphologies
all constrain CR
acceleration and
energy loss history
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Spectral index distribution
as a2 model discriminator

Hadronic and
leptonic models
predict very different
spectral index

distributions
(e.g. CSM, B-field)

Kishishita & Uchiyama 2013
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Spectral index distribution
as a2 model discriminator
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Preliminary
HL+ in prep

Ejecta/CSM models
synthetic X-ray spectrum
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What do we learn?

® A good broadband emission model tightly constrained by
MWV observations can tell us a lot, e.g.:

® Origin of y-rays from a SNR (CR ion, or CR e, or a mixture)

® Fraction of SN explosion energy converted to CR at given age
(Note: CR ions always dominate total energy even for leptonic models)

® Properties of ejecta, CSM, progenitor and its pre-SN winds

® Ve can quantify contributions of different types of SNR to

Galactic CR in their lifetimes
Note: hadronic and leptonic cases often predict very different Ecr

® Our models can consistently bridge state-of-the-art hydro
and explosive nucleosynthesis simulations of SNe to the
SNR phase by covering important (non-)thermal physics!
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Synergy of future super telescopes
for SNR studies

Hi-res X-ray spectroscopy

* Ejecta/CSM composition from faint lines

e Unveil progenitor properties of la and
core-collapse SNRs

* SN explosion mechanisms, matter
mixing and nucleosynthesis

* Broadened line profiles:
gas dynamics, temperature equilibration

Hi-sensitivity, hi-res imaging

® Many new gamma-ray SNR discoveries
* Low-noise spectrum measurement
from ~20GeV to >100 TeV
* Measure roll-over region of CR spectra!
* 3x better TeV morphology measurement

to contrast with radio/IR/X-ray images
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L ast remarks

CR-hydro-NEI code is a fast/versatile code for
broadband emission calculations of SNRs

Next target is full 3-D MHD/emission models

(with essential physics insidel)
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Additional info




CR Spectra
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Time evolution
of broadband spectrum
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Magnetic Field
Amplification (MFA)

¢
d IS,
o
6-C
n
gl -0
>
JN

'log (x/FEB)
§B(z)* HI_+ ZO.I 2

8

— (1 - fdamp)po'u.g (1 — U(a:.)2>

4Map U(m)3/‘2



Alfven wave damping
precursor gas heating
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