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A relativistic jet 1s considered to be launched form
AGN jet the central engine and propagates the progenitor star.
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Rayleigh-Taylor instability grows?

To 1investigate the propagation dynamics and stability of
the relativistic jet

- using relativistic hydrodynamic simulations

focus on the transverse structure of the jet

B 2D simu
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ation: propagation of the relativistic jet



2D simulations:
evolution of the cross section of the relativistic jet

Matsumoto & Masada, ApJL, 772, L1 (2013)



Numerical Setting: 2D Toy Model
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relativistically hot plasma:
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effective inertia:
v’ ph = v*(pc® + 4P)




Richtmyer-Meshkov Instability
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B The Richtmyer-Meshkov 1nstability 1s induced by impulsive acceleration
due to shock passage.

B The perturbation amplitude grows linearly in time (Richtmyer 1960)
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Effective inertia: log y°ph

4 4

(b) t=70 (c) t=90
3 3 contact
discontinuity
~ 2 = 2 g shock
reconfinement 1
shock 1
0 0
4 4
3 2
~ 2 ~ 0
1 -2
0 -4
4




1073 | 0.006 . . .
103 | Model Al —— | 0009
° Model A4 - 1 o 0.004
E | 13
é 107% F l Richtmyer-Meshkov - _E 0.003
= Rayleigh-Taylor 3
- g L 0.002
_ flvz|>0 |v9|'rdrd9 0001
i |U9|avc - f|v-|>0 rdrdd
—6 I I | Y | | | I
10 0.000
0 50 100 150 200 250 300 85 90 05 100 105

t

development of the Rayleigh-Taylor
instability at the jet interface

Vg |ave increases exponentially.

excitation of the Richtmyer-Meshkov
instability at the jet interface

Vg |ave grows linearly with time.

The transverse structure of the jet 1s dramatically deformed by a synergetic growth of
the Rayleigh-Taylor and Richtmyer-Meshkov instabilities once the jet-external
medium interface 1s corrugated 1n the case with the pressure-mismatched jet.
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2D simulations of transverse structure of the jet 1s excluding
the destabilization effects by the Kelvin-Helmholtz mode
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3D simulations:
evolution of the cross section of the relativistic jet



Numerical Setting: 3D Toy Model 1
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Result: Density

Density

finger-like structure eme
the jet-external g




101 i | r 1 r 1 0.0008 l l
10-2 10.0007
N -
< s 10.0006
& 1 0.0005
S 1074 .
— 10.0004
105 0l Jiv. 50 lve|rdrdfdz :
=" flv sordrdfdz 0.0003
1061 ' ' ' ' ' 10,0002 ' '
0 50 100 150 200 250 300 98 99 100 101
2 t

development of the Rayleigh-Taylor
instability at the jet interface

Vg |ave increases exponentially.

excitation of the Richtmyer-Meshkov
instability at the jet interface

V9 |ave grows linearly with time.

We can not find the destabilization effect by the Kelvin-Helmholtz
mode 1n the case of the radial oscillation motion of the jet although
such effect 1s not excluded in the settings.




Without Oscillation
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Without Oscillation
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B The growth rate of the volume-averaged azimuthal velocity due to
the Kelvin-Helmholtz instability 1s greater than the oscillation-
induced Rayleigh-Taylor and Richtmyer-Meshkov 1nstabilities.

B The synergetic growth of the Rayleigh-Taylor and Richtmyer-
Meshkov instabilities trigger the deformation of the radially
oscillating jet.




3D simulation:
propagation of the relativistic jet



Numerical Setting: 3D Toy Model 2

outflow
boundary

B cylindrical coordinate
B relativistic jet (z-direction)

W 1deal gas

B numerical scheme: HLLC (Mignone & Bodo 05)

\ ) ! uniform grid:A 6,




Result: Density

The amplitude of the corrugated jet interface
grows due to the oscillation-induced Rayleigh-
Taylor and Richtmyer-Meshkov 1nstabilities.
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Result: Density
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3D vs Axisymmetric
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B deceleration of the jet due to the mixing between the jet
and surrounding medium in the 3D case.



Deceleration of the jet due to mixing
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B deceleration of the jet due to the mixing between the jet
and surrounding medium in the 3D case.
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B relativistic Bernoulli equation: yh ~ const.

vh: t=2000

vh gives the maximum Lorentz factor of the jet after adiabatic expansion.

However, vh drops to ~ 10 due to the mixing in this case.
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B relativistic Bernoulli equation: yh ~ const.
~vh gives the maximum Lorentz factor of the jet atter adiabatic expansion.

However, vh drops to ~ 10 due to the mixing 1n this case.



Propagation dynamics and stability of the relativistically
hot jet 1s studied through 2D and 3D relativistic

hydrodynamic simulations.

B A pressure mismatch between the jet and surrounding medium leads to
the radial oscillating motion of the jet.

B The jet-ambient medium interface is
unstable due to the oscillation-induced

Rayleigh-Taylor instability
=1

Richtmyer-Meshkov instability

B deceleration of the jet due to the mixing between
the jet and surrounding medium

Next Study:
B more realistic situation for relativistic jets such as AGN jets and GRBs

B cffect of the magnetic field on the dynamics and stability of the jet









Comparison of Grid Points
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In higher resolution case, you can find smaller structures
due to the growth of the Rayleigh-Taylor and Richtmyer-
Meshkov 1nstabilities.




Comparison of Numerical Scheme
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It 1s not easy to find Rayleigh-Taylor and Richtmyer-Meshkov
fingers 1n the model with HLL scheme although the completely
same 1nitial settings and grid spacing (320 x 200 zones r- and
\theta directions) are adopted 1in both models.




Propagation of Rarefaction Wave through the Origin
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Propagation of Shock Wave through the Origin
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B Transition stage (oscillation)

mp Steady state
B Hydrostatic balance

B Energy conversion from thermal energy
into bulk motion energy

relativistic Bernoulli: vh ~ const.




oscillation timescale: propagation time of the sound wave over the jet width
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