# The Central Engines of Short Duration Gamma-Ray Bursts





Columbia University



#### In Collaboration with

Edo Berger, Wen-Fai Fong (Harvard), Tony Piro, Dan Perley (Caltech) Almudena Arcones, Gabriel Martinez-Pinedo (Darmstadt), Todd Thompson (OSU) **Rodrigo Fernandez**, Eliot Quataert, Dan Kasen, Geoff Bower (UC Berkeley) Indrek Vurm, Romain Hascoet, Andrei Beloborodov (Columbia), N. Bucciantini (INAF) **"Gamma-Ray Bursts" November 14, 2013 - YITP, Kyoto, Japan** 

# Neutron Star Binary Mergers

#### "Advanced" LIGO/Virgo (>2016)

Range ~ 200-500 Mpc Detection Rate ~ 1-100 yr<sup>-1</sup>



#### LIGO (North America)



Virgo (Europe)



#### Sky Error Regions ~ 10-100 deg<sup>2</sup> $\Rightarrow$ ~ 10<sup>3</sup>-10<sup>4</sup> galaxies



Astrophysical Origin of R-Process Nuclei Core Collapse Supernovae or NS Binary Mergers?

Galactic r-process rate:  
$$\dot{M}_{A>130} \sim 5 \times 10^{-7} M_{\odot} \text{ yr}^{-1}$$

| н  |    |                         |    | Big | Bang | 3  |    |             |    |    |    |    |    |    |    |    | He |
|----|----|-------------------------|----|-----|------|----|----|-------------|----|----|----|----|----|----|----|----|----|
| Li | Be | Supernovae              |    |     |      |    |    | Small Stars |    |    |    | в  | С  | Ν  | 0  | F  | Ne |
| Na | Mg | Large Stars Cosmic Rays |    |     |      |    |    |             | AI | Si | Ρ  | s  | CI | Ar |    |    |    |
| К  | Ca | Sc                      | Ti | V   | Cr   | Mn | Fe | Co          | Ni | Cu | Zn | Ga | Ge | As | Se | Br | Kr |
| Rb | Sr | Υ                       | Zr | Nb  | Мо   | Тс | Ru | Rh          | Pd | Ag | Cd | In | Sn | Sb | Те | Т  | Xe |
| Cs | Ba |                         | Hf | Та  | w    | Re | Os | Ir          | Pt | Au | Hg | ТΙ | Pb | Bi | Po | At | Rn |
| Fr | Ra |                         |    | _   | _    | _  | _  | _           |    |    | _  | _  | _  |    | _  | _  |    |
|    |    |                         | La | Ce  | Pr   | Nd | Pm | Sm          | Eu | Gd | Tb | Dy | Ho | Er | Tm | Yb | Lu |
|    |    | ·                       | Ac | Th  | Ра   | U  | Np | Pu          | Am | Cm | Bk | Cf | Es | Fm | Md | No | Lr |
|    |    |                         |    |     |      | _  |    |             |    | -  |    | _  |    |    |    | _  |    |

Requires (e.g. Hoffman et al. 1997) (1) low Y<sub>e</sub> (2) high entropy (3) fast expansion

Fraction of r-Process from NS Mergers:

$$f_R \sim \left(\frac{\dot{N}_{\text{merge}}}{10^{-4} \text{ yr}^{-1}}\right) \left(\frac{\overline{M}_{\text{ej}}}{10^{-2} M_{\odot}}\right)$$

# Numerical Simulation - Two 1.4 M<sub>o</sub> NSs



Courtesy M. Shibata (Tokyo U)

## Electromagnetic Counterparts of NS-NS/NS-BH Mergers



## Electromagnetic Counterparts of NS-NS/NS-BH Mergers



# Numerical Simulation - Two 1.4 M<sub>o</sub> NSs



Courtesy M. Shibata (Tokyo U)

# **Remnant Accretion Disk**

(e.g. Ruffert & Janka 1999; Shibata & Taniguchi 2006; Faber et al. 2006; Chawla et al. 2010; Duez et al. 2010; Foucalt 2012; Deaton et al. 2013)



- Disk Mass ~0.01 0.1 M<sub>☉</sub> & Size ~ 10-100 km
- Hot (T > MeV) & Dense (ρ ~ 10<sup>8</sup>-10<sup>12</sup> g cm<sup>-3</sup>)
- Neutrino Cooled: ( $\tau_v \sim 0.01-100$ )
- Equilibrium  $e^+ + n \rightarrow \overline{v}_e + p$  VS.  $e^- + p \rightarrow v_e + n \Rightarrow Y_e \sim 0.1$

Accretion Rate  $\dot{M} \sim 10^{-2} - 10 M_{\odot} \text{ s}^{-1}$ 

$$t_{\rm visc} \sim 0.1 \left(\frac{M_{\bullet}}{3M_{\odot}}\right)^{1/2} \left(\frac{\alpha}{0.1}\right)^{-1} \left(\frac{R_d}{100 \text{ km}}\right)^{3/2} \left(\frac{H/R}{0.5}\right)^{-2} \text{ s}$$

Short GRB Engine?

# Relativistic Jets and Short GRBs

OR





## Relativistic Jets and Short GRBs



## Short GRBs Rare within aLIGO/Virgo Volume



Detectable fraction by all sky γ-ray telescope

$$f_{\gamma} \sim 3.4 \times \frac{\overline{\theta}_{j}^{2}}{2} \sim 0.07 \left(\frac{\overline{\theta}_{j}}{0.2}\right)^{2}$$

# Relativistic Blastwave



Zhang & MacFadyen 2009

## Electromagnetic Counterparts of NS-NS/NS-BH Mergers





## Neutron-Rich Ejecta

### **Dynamical Tidal Tails**

(e.g. Janka et al. 1999; Lee & Kluzniak 1999; Ruffert & Janka 2001; Rosswog et al. 2004; Rosswog 2005; Shibata & Taniguchi 2006; Giacomazzo et al. 2009; Duez et al. 2010; East et al. 2012; Hotokezaka et al. 2013; Bauswein+13)

#### **Full GR / Simple EOS / Circular**

$$Y_e = \frac{n_p}{n_p + n_n} \le 0.05$$

#### **Newtonian / Realistic EOS / Eccentric**

| Model                           | M <sub>ei</sub>       | (10 <sup>-3</sup> M | ₀)       |
|---------------------------------|-----------------------|---------------------|----------|
| APR4-130160_1.8                 | BH                    | 2.0                 |          |
| APR4-140150 1.8                 | BH                    | 0.6                 |          |
| APR4-145145 1.8                 | BH                    | 0.1                 |          |
| APR4-130150 1.8                 | HMNS→BH               | 12                  |          |
| APR4-140140 1.8                 | HMNS→BH               | 14                  |          |
| APR4-120150 1.6                 | HMNS                  | 9                   |          |
| APR4-120150 1.8                 | HMNS                  | 8                   |          |
| APR4-120150 2.0                 | HMNS                  | 7.5                 | I        |
| APR4-125145 1.8                 | HMNS                  | 7                   | ō        |
| APR4-130140 1.8                 | HMNS                  | 8                   | ਰ        |
| APR4-135135 1.6                 | HMNS                  | 11                  | 놋        |
| APR4-135135 1.8                 | HMNS                  | 7                   | Ð        |
| APR4-135135 2.0                 | HMNS                  | 5                   | N        |
| APR4-120140 1.8                 | HMNS                  | 3                   | 뽓        |
| APR4-125135 1.8                 | HMNS                  | 5                   | <u>a</u> |
| APR4-130130 1.8                 | HMNS                  | 2                   | Ф        |
| ALF2-140140 1.8                 | $HMNS \rightarrow BH$ | 2.5                 | Ť        |
| ALF2-120150 1.8                 | HMNS                  | 5.5                 | b        |
| ALF2-125145 1.8                 | HMNS                  | 3                   |          |
| ALF2-130140 1.8                 | $HMNS \rightarrow BH$ | 1.5                 | N        |
| ALF2-135135 1.8                 | $HMNS \rightarrow BH$ | 2.5                 | Ó        |
| ALF2-130130 1.8                 | HMNS                  | 2                   |          |
| H4-130150 1.8                   | $HMNS \rightarrow BH$ | 3                   | 00       |
| H4-140140 1.8                   | $HMNS \rightarrow BH$ | 0.3                 |          |
| H4-120150 1.6                   | HMNS                  | 4.5                 |          |
| H4-120150 1.8                   | HMNS                  | 3.5                 |          |
| H4-120150 2.0                   | HMNS                  | 4                   |          |
| H4-125145 1.8                   | HMNS                  | 2                   |          |
| H4-130140 1.8                   | HMNS                  | 0.7                 |          |
| H4-135135 1.6                   | HMNS→BH               | 0.7                 |          |
| H4-135135 1.8                   | HMNS→BH               | 0.5                 |          |
| H4-135135 2.0                   | HMNS                  | 0.4                 |          |
| H4-120140 1.8                   | HMINS                 | 2.5                 |          |
| H4-125135 1.8                   | HMNS                  | 0.6                 |          |
| 14-130130 1.8<br>ME1 140140 1.2 | HMINS                 | 0.3                 |          |
| MS1-140140 1.8                  | MINS                  | 0.6                 |          |
| MS1-120150 1.8                  | MINS                  | 3.0                 |          |
| MS1-120140 1.8                  | MIND                  | 1.0                 |          |
| MG1 195195 1 0                  | MNS                   | 0.0                 |          |
| MS1-130130 1.0                  | MNS                   | 1.5                 |          |
| MO1-100100 1.0                  | IVIIND                | 1.0                 |          |



## Neutron-Rich Ejecta

### **Dynamical Tidal Tails**

(e.g. Janka et al. 1999; Lee & Kluzniak 1999; Ruffert & Janka 2001; Rosswog et al. 2004; Rosswog 2005; Shibata & Taniguchi 2006; Giacomazzo et al. 2009; Duez et al. 2010; East et al. 2012; Hotokezaka et al. 2013; Bauswein+13)

#### Full GR / Simple EOS / Circular

$$M_{ej} \sim 10^{-4} - 0.1 M_{\odot}$$

$$Y_e \equiv \frac{n_p}{n_p + n_n} \le 0.05$$

#### Newtonian / Realistic EOS / Eccentric

#### APR4-130160 1.8 2.0 APR4-140150 1.8 BH0.6 APR4-145145 1.8 BH0.1 APR4-130150 1.8 HMNS→BH 12 14 APR4-140140 1.8 HMNS→BH APR4-120150 1.6 HMNS 9 APR4-120150 1.8 HMNS 8 7.5 APR4-120150 2.0 HMNS HMNS lotokezaka et al. 2013 APR4-125145 1.8 APR4-130140 1.8 HMNS APR4-135135 1.6 HMNS 11 APR4-135135 1.8 HMNS APR4-135135 2.0 HMNS APR4-120140 1.8 HMNS HMNS APR4-125135 1.8 APR4-130130 1.8 HMNS ALF2-140140 1.8 HMNS→BH 2.55.5ALF2-120150 1.8 HMNS ALF2-125145 1.8 HMNS $\frac{3}{1.5}$ ALF2-130140 1.8 | HMNS $\rightarrow$ BH ALF2-135135 1.8 | HMNS $\rightarrow$ BH 2.5ALF2-130130 1.8 HMNS H4-130150 1.8 H4-140140 1.8 $\rm HMNS \rightarrow BH$ 0.3 H4-120150 1.6 HMNS 4.5H4-120150 1.8 HMNS 3.5H4-120150 2.0 HMNS 4 HMNS H4-125145 1.8 2 0.7 H4-130140 1.8 HMNS H4-135135 1.6 $HMNS \rightarrow BH$ 0.7 H4-135135 1.8 HMNS→BH 0.5 $0.4 \\ 2.5$ H4-135135 HMNS 2.0 HMNS H4-120140 1.8 H4-125135 1.8 HMNS 0.6 H4-130130 1.8 HMNS 0.3 MS1-140140 1.8 MNS 0.6 MNS MS1-120150 1.8 3.5MS1-125145 1.8 MNS 1.5MS1-130140 1.8 MNS 0.6 MS1-135135 1.8 MNS 1.5

MNS

1.5

 $M_{ei}$  (10<sup>-3</sup> M<sub>o</sub>)

Model

## **Disk Outflows**

#### **Neutrino-Powered (Early)**

(e.g. McLaughlin & Surman 05; Surman+08; BDM+08; Dessart+09; Wanajo & Janka 12)

#### **Recombination-Powered (Late)**



(e.g. Beloborodov 08; BDM+08, 09; Lee+09; Fernandez & BDM 13)

$$M_{ej} = f_w M_d \sim 10^{-3} - 10^{-2} (f_w / 0.1) M_{\odot}$$



MS1-130130 1.8

**R-Process Network** (neutron captures, photo-dissociations,  $\alpha$ - and  $\beta$ -decays, fission)

## Radioactive Heating of Merger Ejecta

(BDM et al. 2010; Roberts et al. 2011; Goriely et al. 2011; Korobkin et al. 2012; Bauswein et al. 2013)



Dominant β-Decays at t ~ 1 day:  $^{132,134,135}$  I,  $^{128,129}$ Sb, $^{129}$ Te, $^{135}$ Xe Relatively insensitive to details (Y<sub>e</sub>, expansion history, NSE or not)

#### **Bolometric Luminosity**

#### **Color Evolution**





# High Opacity of the Lanthanides

(Kasen et al. 2013; Tanaka & Hotokezaka 2013)











#### **Bolometric Luminosity**











#### **Bolometric Luminosity**













## Neutron-Rich Ejecta

#### **Dynamical Tidal Tails**

(e.g. Janka et al. 1999; Lee & Kluzniak 1999; Ruffert & Janka 2001; Rosswog et al. 2004; Rosswog 2005; Shibata & Taniguchi 2006; Giacomazzo et al. 2009; Duez et al. 2010; East et al. 2012; Hotokezaka et al. 2013)

#### Full GR / Simple EOS / Circular

 $M_{ej} \sim 10^{-4} - 0.1 M_{\odot}$ 

$$Y_e \leq 0.05$$

#### Newtonian / Realistic EOS / Eccentric

## **Disk Outflows**

#### **Neutrino-Powered (Early)**

(e.g. McLaughlin & Surman 05; Surman+08; BDM+08; Dessart+09)

#### **Recombination-Powered (Late)**



(e.g. Beloborodov 08; BDM+08, 09; Lee+09; Fernandez & BDM 13)

$$M_{ei} = f_w M_d \sim 10^{-3} - 10^{-2} (f_w / 0.1) M_{\odot}$$

|        | 4.0              | 8.4    | 6.7 | 8.1     | 9.5 | 10.8     | 12.2 |
|--------|------------------|--------|-----|---------|-----|----------|------|
| to the |                  |        |     |         |     |          | 0    |
|        |                  |        |     |         |     |          | 1    |
| 5×10*  |                  |        |     |         |     |          | -    |
| _      |                  |        |     |         |     |          |      |
| Ξ.     | 2                |        |     |         |     |          |      |
| 14     |                  |        |     |         |     | -        |      |
|        |                  |        |     |         |     |          |      |
| -5-10  |                  |        |     |         |     | /        |      |
|        |                  |        |     |         |     |          |      |
| -1+107 | ·                |        |     |         |     | <u> </u> |      |
| 2.6    | ~10 <sup>m</sup> | 1.5~10 |     | 1.0+107 |     | .0-10#   |      |

| Model            | M <sub>ej</sub>             | (10⁻³ M | <sub>⊙</sub> ) |
|------------------|-----------------------------|---------|----------------|
| APR4-130160 1.8  | BH                          | 2.0     |                |
| APR4-140150 1.8  | BH                          | 0.6     |                |
| APR4-145145 1.8  | BH                          | 0.1     |                |
| APR4-130150 1.8  | HMNS→BH                     | 12      |                |
| APR4-140140 1.8  | $HMNS \rightarrow BH$       | 14      |                |
| APR4-120150 1.6  | HMNS                        | 9       |                |
| APR4-120150 1.8  | HMNS                        | 8       |                |
| APR4-120150 2.0  | HMNS                        | 7.5     | エ              |
| APR4-125145 1.8  | HMNS                        | 7       | Q              |
| APR4-130140 1.8  | HMNS                        | 8       | ō              |
| APR4-135135 1.6  | HMNS                        | 11      | 조              |
| APR4-135135 1.8  | HMNS                        | 7       | R.             |
| APR4-135135 2.0  | HMNS                        | 5       | 6              |
| APR4-120140 1.8  | HMNS                        | 3       | <b>x</b>       |
| APR4-125135 1.8  | HMNS                        | 5       | മ              |
| APR4-130130 1.8  | HMNS                        | 2       | Ð              |
| ALF2-140140 1.8  | HMNS→BH                     | 2.5     | T.             |
| ALF2-120150 1.8  | HMNS                        | 5.5     | <u>m</u>       |
| ALF2-125145 1.8  | HMNS                        | 3       | 1.             |
| ALF2-130140 1.8  | $\Pi M NS \rightarrow D\Pi$ | 1.0     | $\mathbb{N}$   |
| ALF 2-130100 1.0 | $\Pi M NS \rightarrow D\Pi$ | 2.0     | <u> </u>       |
| H4 120150 1.8    | HMNS                        | 2       | ယ              |
| H4 140140 1.8    | HMNS_BH                     | 0.3     |                |
| H4-190150 1.6    | HMNS                        | 4.5     |                |
| H4-120150 1.8    | HMNS                        | 3.5     |                |
| H4-120150 2.0    | HMNS                        | 4       |                |
| H4-125145 1.8    | HMNS                        | 2       |                |
| H4-130140 1.8    | HMNS                        | 0.7     |                |
| H4-135135 1.6    | HMNS→BH                     | 0.7     |                |
| H4-135135 1.8    | HMNS→BH                     | 0.5     |                |
| H4-135135 2.0    | HMNS                        | 0.4     |                |
| H4-120140 1.8    | HMNS                        | 2.5     |                |
| H4-125135 1.8    | HMNS                        | 0.6     |                |
| H4-130130 1.8    | HMNS                        | 0.3     |                |
| MS1-140140 1.8   | MNS                         | 0.6     |                |
| MS1-120150 1.8   | MNS                         | 3.5     |                |
| MS1-125145 1.8   | MNS                         | 1.5     |                |
| MS1-130140 1.8   | MNS                         | 0.6     |                |
| MS1-135135 1.8   | MNS                         | 1.5     |                |
| MS1-130130 1.8   | MNS                         | 1.5     |                |

# Numerical Simulation - Two 1.4 M<sub>o</sub> NSs



Courtesy M. Shibata (Tokyo U)





# Delayed Disk Winds ('Evaporation')

After t ~ 1 seconds, R ~ 300 km & T < 1 MeV

## Recombination: n + p ⇒ He

E<sub>BIND</sub> ~ GM<sub>BH</sub>m<sub>n</sub>/2R ~ 5 MeV nucleon<sup>-1</sup>

 $\Delta E_{NUC} \sim 7 \text{ MeV nucleon}^{-1}$ 

## Thick Disks Marginally Bound

# Delayed Disk Winds ('Evaporation') After t ~ 1 seconds, $R \sim 300 \text{ km } \& T < 1 \text{ MeV}$ **Recombination:** $n + p \Rightarrow He$ $E_{BIND} \sim GM_{BH}m_n/2R \sim 5 \text{ MeV nucleon}^{-1}$ **Disk Blows** $\Delta E_{NUC} \sim 7 \text{ MeV nucleon}^{-1}$ Apart **Thick Disks Marginally Bound** BH Sizable Fraction of Initial Disk Unbound!

# Axisymmetric Torus Evolution

(Fernandez & Metzger 2012, 2013)

- P-W potential with  $M_{BH} = 3,10 M_{\odot}$
- hydrodynamic  $\alpha$  viscosity
- NSE recombination  $2n+2p \Rightarrow {}^{4}He$
- run-time  $\Delta t \sim 1000-3000 t_{orb}$
- neutrino self-irradiation: "light bulb"+ optical depth corrections:





# Late Disk Outflows (Evaporation)



# Late Disk Outflows (Evaporation)



0.05 - 0.2 M<sub>t</sub>

|   |                                                                                                   |                      |                        |                       |                              | <b>、</b> /                |                      |                                                                                                                                                     |                                                                      |                                                         |
|---|---------------------------------------------------------------------------------------------------|----------------------|------------------------|-----------------------|------------------------------|---------------------------|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|---------------------------------------------------------|
| _ | Model                                                                                             | $M_{t0}$ (M          | М <sub>ВН</sub><br>(⊙) | $R_0$ (km)            | $Y_{e0}$                     | $s_0 \atop (k_B/{\rm b})$ | α                    | $\frac{M_{\rm ej}/M_{\rm acc}}{(M_{\rm t0}/M_{\rm t0})}$                                                                                            | $\bar{v}_{r,9}$                                                      | outflow robust                                          |
|   | S-def                                                                                             | 0.03                 | 3                      | 50                    | 0.10                         | 8                         | 0.03                 | 0.10/0.90                                                                                                                                           | 2.2                                                                  |                                                         |
|   | S-m0.01<br>S-m0.10<br>S-R75<br>S-M10<br>S-y0.05<br>S-y0.15<br>S-s6<br>S-s10<br>S-v0.01<br>S-v0.10 | 0.01<br>0.10<br>0.03 | 3<br>10<br>3           | 50<br>75<br>150<br>50 | 0.10<br>0.05<br>0.15<br>0.10 | 8<br>6<br>10<br>8         | 0.03<br>0.01<br>0.10 | $\begin{array}{c} 0.10/0.90\\ 0.11/0.89\\ 0.22/0.78\\ 0.04/0.92\\ 0.10/0.90\\ 0.10/0.90\\ 0.08/0.91\\ 0.12/0.88\\ 0.11/0.89\\ 0.13/0.87\end{array}$ | $2.2 \\ 2.3 \\ 2.2 \\ 1.8 \\ 2.2 \\ 2.3 \\ 1.9 \\ 2.6 \\ 2.5 \\ 2.4$ | M <sub>ej</sub> ~ 0.05 - 0.2<br>V <sub>ej</sub> ~ 0.1 c |

# **Outflow Composition**

#### Y<sub>e</sub> Freeze Out



 ${}^{4}\mathrm{He}(\alpha\mathrm{n},\gamma){}^{9}\mathrm{Be}(\alpha,\mathrm{n}){}^{12}\mathrm{C}$ 

then α-process (Woosley & Hoffman 92)

$$\frac{n}{seed} > 100 \Longrightarrow A > 130$$

 $\Rightarrow$  r-process (including lanthanides)



# Composition (Preliminary)



## Implications of Neutron-Rich Outflows

• Robust heavy r-process source (distinct from dynamical ejecta)

$$\dot{M}_{\rm r} = 10^{-7} M_{\odot} {\rm yr}^{-1} \left( \frac{\mathcal{R}_{\rm NS^2}}{10^{-4} {\rm yr}^{-1}} \right) \left( \frac{f_{\rm ej}}{0.1} \right) \left( \frac{\bar{M}_{\rm t}}{10^{-2} M_{\odot}} \right) \qquad \dot{M}_{A>130}^{\rm Galactic} \sim 5 \times 10^{-7} M_{\odot} {\rm yr}^{-1}$$
(Qian 2000)

- Disk outflow emission hard to distinguish from tidal tail
  - High opacity of lanthanides  $\Rightarrow$  both produce RED and long (~WEEK) kilonova



A 'kilonova' associated with the short-duration γ- ray burst GRB130603B

N. R. Tanvir, A. J. Levan, A. S. Fruchter, J. Hjorth, R. A. Hounsell, K. Wiersema & R. L. Tunnicliffe





If true, confirms association of short GRBs and NS-NS mergers

A 'kilonova' associated with the short-duration γ- ray burst GRB130603B

NATURE | LETTER

N. R. Tanvir, A. J. Levan, A. S. Fruchter, J. Hjorth, R. A. Hounsell, K. Wiersema & R. L. Tunnicliffe

(see also Berger+13; de Ugarte Postigo+13; Fong+13)











# Neutrinos from NS Remnant



# Indefinitely Stable Neutron Star Remnant?

(e.g. BDM+08; Ozel et al. 2010; Bucciantini et al. 2012; Zhang 13; Giacomazzo & Perna 13; Falcke & Rezzolla 13; Kiziltan 2013)

- Requires: low total mass binary, stiff EOS\*, and/or mass loss during merger \*supported by recent discovery of 2M<sub>o</sub> NS by Demorest et al. 2011
- Rotating near centrifugal break-up with spin period P ~ 1 ms
- Magnetic field amplified by rotational energy ⇒ "Magnetar" ?



(e.g. Thompson & Duncan 92; Price & Rosswog 2006; Zrake & MacFadyen 2013)

Giacomazzo & Perna 2013

10

20

# Short GRBs with Extended Emission



- 1/5 Swift Short Bursts have X-ray Tails
- Rapid Variability 

  Ongoing Engine Activity
- Energy up to ~30 times Burst Itself!



BATSE Examples (Norris & Bonnell 2006)

# Magnetar Spin-Down Powered Extended Emission

(BDM et al. 2008; Bucciantini, BDM et al. 2012; cf. Gao & Fan 2006)



Jet may continue to inject energy into forward shock or produce lower level prompt emission

(Zhang & Meszaros 2001; Dall'Osso et al. 2011; Rowlinson et al. 2013; Gompertz et al. 2013)

# Millisecond Magnetar Wind Nebula Metzger & Piro, submitted (see also Yu et al. 2013)

$$\begin{array}{l} \text{time for jet to} \\ \text{escape envelope} \end{array} \quad t_{\text{bo}} \approx 0.17 \left(\frac{L_{\text{j}}}{10^{47} \text{erg s}^{-1}}\right)^{-1/3} \left(\frac{\theta}{30^{\circ}}\right)^{4/3} \left(\frac{R_{\text{ej}}}{10^{13} \text{ cm}}\right)^{2/3} \left(\frac{M_{\text{ej}}}{0.01 M_{\odot}}\right)^{1/3} \text{ hr} \\ \hline \\ \text{Bromberg et al. 2011} \end{array}$$

$$\begin{array}{l} \text{jet power } \propto \text{ pulsar luminosity} \qquad L_{\text{j}} \sim L_{\text{sd}} = \frac{\mu^2 \Omega^4}{c^3} \quad \approx 1.2 \times 10^{48} B_{15}^{-2} t_{\text{hr}}^{-2} \text{ erg s}^{-1} \\ \hline \\ \frac{t_{\text{bo}}}{t} \sim 0.6 \left(\frac{\epsilon_j}{0.5}\right)^{-1/3} \left(\frac{B_{\text{d}}}{10^{15} \text{G}}\right)^{2/3} \left(\frac{\theta}{30^{\circ}}\right)^{4/3} \left(\frac{v_{\text{ej}}}{c}\right)^{2/3} \left(\frac{M_{\text{ej}}}{0.01 M_{\odot}}\right)^{1/3} \left(\frac{t}{\text{hr}}\right)^{1/3} \end{array}$$

 $\Rightarrow$  Jet 'choked' behind ejecta at late times

# Millisecond Magnetar Wind Nebula Metzger & Piro, submitted (see also Yu et al. 2013)

time for jet to  
escape envelope  
$$t_{bo} \approx 0.17 \left(\frac{L_{j}}{10^{47} \text{erg s}^{-1}}\right)^{-1/3} \left(\frac{\theta}{30^{\circ}}\right)^{4/3} \left(\frac{R_{ej}}{10^{13} \text{cm}}\right)^{2/3} \left(\frac{M_{ej}}{0.01M_{\odot}}\right)^{1/3} \text{ hr}$$
  
Bromberg et al. 2011  
$$L_{j} \sim L_{sd} = \frac{\mu^{2}\Omega^{4}}{c^{3}} \approx 1.2 \times 10^{48} B_{15}^{-2} t_{hr}^{-2} \text{ erg s}^{-1}$$
$$\frac{t_{bo}}{t} \sim 0.6 \left(\frac{\epsilon_{j}}{0.5}\right)^{-1/3} \left(\frac{B_{d}}{10^{15} \text{G}}\right)^{2/3} \left(\frac{\theta}{30^{\circ}}\right)^{4/3} \left(\frac{v_{ej}}{c}\right)^{2/3} \left(\frac{M_{ej}}{0.01M_{\odot}}\right)^{1/3} \left(\frac{t}{hr}\right)^{1/3}$$
$$\Rightarrow \text{ Jet 'choked' behind ejecta at late times}$$
$$\ell \equiv \frac{E_{\text{nth}}\sigma_{T}R}{Vm_{e}c^{2}}$$
$$\underset{i \gg t_{sd}}{\sim} 3 \times 10^{4} B_{15}^{-2} t_{hr}^{-3}$$

## Evolution Model for Millisecond Pulsar Wind Nebulae

(BDM, Vurm, Hascoet & Beloborodov 2013; BDM & Piro 2013)



## Non-Thermal (UV / X-rays)

Source: cooling e<sup>+/-</sup> pairs (pulsar) Sinks: PdV work, absorption by ejecta walls Thermal Bath (Optical) Source: re-emission of X-rays by ejecta walls

Sinks: PdV work, radiative diffusion

## **Ejecta Ionization State**

- Balance photo-ionization with recombination in ionized layer(s)
- Sets ejecta albedo (thermalization efficiency)







 $\tau_{ej}$ 

 $\chi > 1 \Rightarrow$  X-rays lose most of their energy to P dV work before reaching ejecta walls to be absorbed

# X-ray Excesses in Kilonova Candidates

#### GRB 130603B

#### GRB 080503



See also Zhang 2013, Gao et al. 2013

# Radio constraints on long-lived NS merger remnants

-2

#### (BDM & Bower 2013)

Rotational energy

$$E_{\rm rot} = \frac{1}{2}I\Omega^2 \simeq 3 \times 10^{52} {\rm ergs}\left(\frac{P}{1\,{\rm ms}}\right)^2$$

eventually transferred to ISM  $\Rightarrow$  bright radio emission (cf. Gao+13)

- Observed 7 short GRBs with VLA on timescales ~1-3 years after burst
- NO DETECTIONS ⇒ rules out stable NS remnant in 2 GRBs with known high ISM densities
- Additional JVLA observations *now*much more constraining

 Upcoming radio surveys (e.g. ASKAP) will strongly constrain population of stable NS merger remnants ⇒ indirectly probes EoS



# Timeline of Binary NS Mergers

| 1. Chirp enters LIGO Bandpass                                                                                                                                                                                                                                                                                                           | t (minus) ~ mins         |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|
| 2. Last Orbit, Plunge & Dynamical Ejecta                                                                                                                                                                                                                                                                                                | t ~ ms                   |
| 3. BH Formation                                                                                                                                                                                                                                                                                                                         | ~ ms - ∞                 |
| 4. Accretion of Remnant Disk, Jet Formation (GRB)                                                                                                                                                                                                                                                                                       | ~ 0.1-1 s                |
| 5. He-Recombination + Disk Evaporation<br>$\Rightarrow$ outflow Y <sub>e</sub> depends on NS collapse time                                                                                                                                                                                                                              | ~ 0.3-3 s                |
| 6. R-Process in Merger Ejecta                                                                                                                                                                                                                                                                                                           | ~ few s                  |
| 7. Jet from Magnetar (X-rays)                                                                                                                                                                                                                                                                                                           | ~ min (or longer)        |
| 8. Disk Wind Kilonova<br>$\Rightarrow$ prompt BH formation Y <sub>e</sub> < 0.25 (NIR, L ~ 10 <sup>41</sup> erg s <sup>-1</sup> )<br>$\Rightarrow$ delayed BH formation Y <sub>e</sub> > 0.3 (Optical, L ~ 10 <sup>42</sup> erg s <sup>-1</sup> )<br>$\Rightarrow$ stable magnetar (Optical, L ~ 10 <sup>44</sup> erg s <sup>-1</sup> ) | ∼ week<br>∼ day<br>∼ day |
| 9. Tidal Tail Kilonova (IR)                                                                                                                                                                                                                                                                                                             | ~ week                   |
| 10. Ejecta ISM Interaction (Radio)<br>⇒ Much brighter if stable magnetar                                                                                                                                                                                                                                                                | ~ years                  |



The Structure and Signals of Neutron Stars, from Birth to Death

Workshop: March 10 - April 17, 2014

Conference: March 24 - 28, 2014

- Equation of state of dense matter, including hyperon, kaon and quark degrees of freedom
- Neutrino emission and cooling of compact stars
- Constraints from EM observations
- Gravitational wave sources
- Models for Supernovae and for Gamma Ray Bursts
- Magnetars

organizers: Fiorella Burgio Allessandro Drago Ian Jones Brian Metzger Pierre Pizzochero Anna Watts

Registration Deadline: December 15, 2013 <u>http://indico.cern.ch/e/NS2014</u>