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Major Questions in 
Supernova Theory

● How does the “engine” work? Is 
the -driven mechanism viable 
or do we need something else?

● What can we observe?
● Neutrinos – from bounce to 

cooling

● Gravitational waves (?)

● Nucleosynthesis yields

● Ejecta morphology, pulsar 
kicks, light curves...



  

The Thorny Path towards Explosion 
Models



  

Computational 
Challenges

● Multi-dimensionality of the flow

● Multi-scale problem

● Transition between the diffusion & 
free streaming regimes of the 
neutrinos → kinetic theory required 
→ 6D problem

● Nuclear & particle physics input 
partly undetermined

● Strong gravitational fields 
(GM/rc2≈0.1...0.2) & high velocities 
→ relativistic effects important

● Combine all this in a first-principle 
approach!

● The most ambitious 3D models 
currently take ~5000 core years

not to scale

several 100 km

~108km



  

Why SN explosions have proved 
difficult to obtain (in simulations...)

● Delicate sensitivity of heating/cooling to neutrino interaction rates: 
tadv/theat~(LE

2)5/3 → importance of accurate transport

● General relativity only recently included in multi-dimensional 
transport simulations (Müller et al. 2010; first attempts in 3D: Kuroda 
et al. 2012, Ott et al. 2013)

● Long simulations  (~1s) and 3D models not feasible until recently

● Too few models: impact of progenitor variations (in the innermost 
<2M8) has long remained unexplored

● More successful results recently reported (results & methods cannot 
all be evaluated here):

● MPA group: Marek & Janka (2009), Müller et al. (2012, 2013), Janka et al. 
(2012)

● Suwa et al. (2010, 2012), Takiwaki et al. (2012), Kuroda (2012)

● OakRidge group: Bruenn et al. (2009), Bruenn et al. (2012).



  

A Panoramic View of Multi-Group Neutrino 
Hydrodynamics Simulations (MPA Group)

11.2 M8
15 M8 27 M8

oscillatory 
“sloshing”

Evolution of the entropy along the polar axis
(show shock evolution, shell interfaces & neutrino-heated matter)

8.8 O-Ne-Mg core progenitor 8.1 M8, Z=10-4Z8
9.6 M8, Z=0

 Janka et al. (2012)

shock
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A Large Variety of Ways Towards the Explosion

8.8 O-Ne-Mg core progenitor

11.2 M8 Supernovae with O-Ne-Mg 
cores:
●Robust explosions 
obtained by 3 groups 
(MPA, Arizona, Basel)
●Clue: Tenuous envelope 
around iron core



New Class of Fast-Exploding Low-Mass 
Progenitors with Iron Cores

8.1 M8, Z=10-4Z8
9.6 M8, Z=0





  

More 2D explosions from 2013

Progenitors from Woosley et al. (2002)Progenitors from Woosley et al. (2002)

Criticality 
parameter for 

neutrino heating

Progenitors from Woosley & Heger (2007)



  

Open Questions

2D 3D

15 M8 (no  
transport!)

● Explosions still difficult to obtain 
in 2D especially for some of the 
less massive progenitors!

● Mass ranges for 
successful/failed explosions 
compatible with observations?

● Explosion energies to low?

● Do the large-scale sloshing 
motions that facilitate explosions 
in 2D survive in 3D?

● Net effect of 3D helpful or even 
harmful? Opinions differ...

Hanke et al. 
(2012)

radial 
velocity

entropy 
snapshots

Eldrige & Smartt



  

Open Questions

2D 3D

15 M8 (no  
transport!)

Hanke et al. 
(2012)

radial 
velocity

entropy 
snapshots

from Nomoto
et al. (2003)

● Explosions still difficult to obtain 
in 2D especially for some of the 
less massive progenitors!

● Mass ranges for 
successful/failed explosions 
compatible with observations?

● Explosion energies to low?

● Do the large-scale sloshing 
motions that facilitate explosions 
in 2D survive in 3D?

● Net effect of 3D helpful or even 
harmful? Opinions differ...



  

Does the SASI Survive in 3D?
shock 

surface

● Strong sloshing & “spiral” mode in 
two 3D models with full  
transport 

● SASI looks even “cleaner” than in 
2D

● Recent parametrized 3D models 
provide further confirmation 
(Couch & O'Connor 2013)
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Heating Conditions: 
2D vs. 3D

● 3D simulations for 
11.2M8, 20M8 & 27M8 
with multi-group 
transport underway

● No explosions so far!
● Consistent picture:

● Transient phase with 
better heating conditions 
than in 2D

● Failure close to runaway 
threshold 



  

The Conundrum
● Ways to obtain robust bubble 

expansion in 3D:
● Reduced drag at high resolution – 

but beware of analogies!

● Progenitor asphericities (Couch & 
Ott 2013)? How large is the 
effect?

● Magnetic fields? Weak rotation?

● Neutrino luminosities, mean 
energy & flux factors accurate 
within 10%?
● Rate uncertainties at 

neutrinospheric densities?

● Flavor conversion (multi-
azimuthal angle instability...)? 

Drag coefficient vs. Reynolds number
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Probing the Supernova Core with 
Neutrinos

What will observations of a Galactic supernova tell us 
about the supernova engine?



Neutrino Signal – Overview
● Electron neutrino burst 

after bounce

● Accretion phase:

● Gray-body law for /:

● Additional accretion 
contribution

for e and e

● e mean energy~neutron 

star mass

● Signs of the explosion?

onset of 
explosion

Lacc~GM Ṁ /R

L~4 R2T 4

 27 M8 model, spherical integration of 
the total neutrino flux



Can we learn more about the dynamics?

25 M8

● Exploit temporal 
variations of the  
signal as fingerprints 
of multi-D instabilities!

● Exemplary cases:
● Supernova models as 

seen by the IceCube 
detector at a distance of 
10kpc

● No non-linear flavor 
conversion & ordinary 
mass hierarchy assumed

 flux  flux



Detecting Shock Oscillations

Non-exploding 25 M8 model

● Sloshing motions result in 
quasi-periodic and 
asymmetric neutrino 
emission

● Sloshing frequency 
related to shock and 
proto-neutron star radius

● Modulations survive in 3D 
(Tamborra et al. 2013)

● Detectable in IceCube for 
up to ~10 kpc

● Opportunity to reconstruct 
shock trajectory!



period∝ rshock
3/ 2 ln

r shock
rPNS
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Detecting Shock Oscillations



Signatures of the Explosion

oscillatory 
“sloshing”

 27 M8 explosion model

● Explosion phase 
characterized by slowly-
changing large-scale 
anisotropies

● → emission modulation 
periods >20 Hz

● Weak explosions: 
possible emission spikes 
due to “early fallback”



Signatures of the Explosion

radial 
velocity

entropy

 15 M8 explosion model

● Explosion phase 
characterized by slowly-
changing large-scale 
anisotropies

● → emission modulation 
periods >25ms
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Summary & Outlook
● The neutrino-driven supernova mechanism works for a host progenitor 

models in 2D (from 8.1M8 to 27M8) thanks to GR, good  transport 
and improved  rates

● But: first self-consistent 3D models with VERTEX fail to explode, 
though not by far!

● Conclusions:

● 3D supernova models may bring up more questions than they answer

● Cross-comparisons of model needed to ensure the accuracy of current simulations

● Don't shirk from questioning the input physics (progenitors, high-density physics, 
neutrino physics) and current simulation methodology

● Direct observations of supernova neutrinos would help a lot to validate 
or correct multi-D simulations:

● Time evolution of luminosities & rise of neutrino mean energies reflect the 
accretion history (→ progenitor structure)

● SASI activity & shock recession/expansion directly reflected in time-frequency 
structure of the neutrino signal

● Emission modulations at frequencies < 40 Hz mark the onset of the explosion

● Early fallback in weak explosions will produce emission spikes
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