Supernovae Conference, Kyoto, October 31, 2013

Detection of supernova Neutrinos

M.Nakahata Kamioka observatory ICRR/IPMU, Univ. of Tokyo

Contents

Supernova burst neutrinos

- SN1987A
- Current detectors in the world
- What information neutrino detectors can provide

Supernova relic neutrinos

(Diffuse Supernova Neutrino Background)

- Expected signals
- GADZOOKS! project at Super-K
- Current R&D status

Future large volume detectors

- Liquid Ar
- Water Cherenkov

For nearby (e.g. betelgeuse) supernova

- Activity at Super-K
- Can we detect precursor (Si burning neutrinos) ?

Neutrino emission from core collapse supernova

Released gravitational energy: ~3x10⁵³ erg

Neutrinos carry almost all (99%) of the energy.

So, neutrino detection is important to investigate energy flow of the core collapse.

Livermore simulation

(often used for signal estimation for neutrino detectors)

Mass trajectory points versus time Solid: every fifth mass point Dashed: mass points 108 and 109 10+9 Radius (cm) 10+7 10+6 2.0 -0.5 0.0 0.5 15 Time (seconds)

T.Totani, K.Sato, H.E.Dalhed and J.R.Wilson, ApJ.496,216(1998)

SN1987A: supernova at LMC(50kpc)

History of supernova detectors

The Baksan underground scintillation telescope (Russia)

No candidate for 28 years' observation time from 1980 to 2013. Upper limit of SN rate: < 0.082 /yr

From E.N.Alexeyev, A. Gaponenko

LVD detector (at Gran Sasso, Italy)

LVD consists of an array of 840 counters, 1.5 m³ each.

Total target: 1000 t liquid scintillator

4MeV threshold With <1MeV threshold for delayed signal (neutron tagging efficiency of 50 +- 10 %)

E resolution: $13\%(1\sigma)$ at 15MeV

~300 $\overline{\nu_e}p \rightarrow e^+n$ events expected for 10 kpc SN.

No candidate for 19.3 years from 1992 to 2013. Upper limit of SN rate: < 0.12 /yr

C.Vigorito et al., ICRC2013, Paper ID: 453

Single volume liquid scintillator detectors

KamLAND (Kamioka, Japan)

1000ton liq.sci. Running since 2002.

Borexino Experiment

Scintillato

300ton liq.sci.

2200 Thorn EMI 8" PMTs (1800 with light collector 400 without light coll

Steel plates in concrete for extr shielding-10m x 10m x 10cm 4m x 4m x 4cm

1000ton liq.sci. Under construction.

From K.Inoue, G.Bellini, M.Chen

Liquid scinitillator detectors Expected number of events(for 10kpc SN) Events/1000 tons

HALO (SNOLAB, Canada)

CC:	ν_e + ²⁰⁸ Pb	\rightarrow	$^{207}\text{Bi} + n + e^{-}$
NC:	ν_e + ²⁰⁸ Pb	\rightarrow	$^{206}\text{Bi} + 2n + e^{-}$
	ν_x + ²⁰⁸ Pb	\rightarrow	207 Pb + n
	$\nu_x + {}^{208}\mathrm{Pb}$	\rightarrow	206 Pb + 2n

HALO is using 76 tonnes of Pb

For a SN @ 10kpc[†],

- Assuming FD distribution with T=8 MeV for v_{μ} 's, v_{τ} 's.
- 68 neutrons through v_e charged current channels
- 20 neutrons through v_x neutral current channels
- ~ 88 neutrons liberated;

with \sim 50% of detection efficiency, \sim 40 events expected.

IceCube (South pole)

Design Specifications

- Fully digital detector concept
- Number of strings 75
- Number of surface tanks 160
- Number of Optical modules (DOMs) - 4820
- Instrumented volume 1 km³

Supernova neutrinos coherently increase single rates of PMTs.

Running with full detector configuration since Dec., 2010.

IceCube signal

Advantage: high statistics (0.75% stat. error @ 0.5s and 100ms bins) Good for fine time structures (noise low)!

Disadvantage:

- no pointing
- no energy
- intrinsic noise

Significance: Galactic center: ~200 σ LMC : ~5 σ SMC : ~4 σ

From L.Koepke

High frequency signal variation by SASI SASI=standing accretion shock instability

Model dependence of Super-K prediction

Livermore simulation T.Totani, K.Sato, H.E.Dalhed and J.R.Wilson, ApJ.496,216(1998)

Nakazato et al. K.Nakazato, K.Sumiyoshi, H.Suzuki, T.Totani, H.Umeda, and S.Yamada, ApJ.Suppl. 205 (2013) 2, (20M_{sun}, trev=200msec, z=0.02 case)

Number of events comparison

	Livermore	Nakazato			
$\overline{v_e}$ +p	7300	3100			
v+e	320	170			
¹⁶ O CC	110	57			
	for 10 kpc supernova 32kton SK volume 4.5MeV(kin) threshold without v oscillation				

Factor of ~2 difference

Summary of current supernova v detectors

Directionality -# of events expected for 10kpc. 330 ton liquid scintillator Baksan No ~100 $\overline{v_e} p \rightarrow e^+ n$ events. (1980-)1000 ton liquid scintillator. 840 counters 1.5m³ each. 4 MeV No IND thres., ~50% eff. for tagging decayed signal. (1992-)~300 $\overline{v_e}$ p \rightarrow e⁺n events. Yes 32,000 tons of water target. Super-K ~7300 $\overline{v_e}$ p \rightarrow e⁺n, ~300 ve \rightarrow ve scattering events. (1996-)No 1000 ton liquid scintillator, single volume. KamLAND ~300 $\overline{v}_e p$, several 10 CC on ¹²C, ~60 NC γ , ~300 vp \rightarrow vp (2002 -)Gigaton ice target. No **ICECUBE** By coherent increase of PMT single rates. (2005-)High precision time structure measurement. No 300 ton liquid scintillator, single volume. BOREXINO ~100 $\overline{v}_e p$, ~10 CC on ¹²C, ~20 NC γ , ~100 vp \rightarrow vp (2007-)No HALO SNO ³He neutron detectors with 76 ton lead target. ~40 events expected. (2010-)

Super-K: simulation of angular distribution

Supernova Relic Neutrinos

GADZOOKS! project at Super-K

Identify $\overline{v_e}p$ events by neutron tagging with Gadolinium.

Gadolinium has large neutron capture cross section and emit 8MeV gamma cascade.

ΔT~20µs Vertices within 50cm

Expected SRN signal and background at Super-K

Expect number of events in 10 years in E_{total} =10-30 MeV

<u>Assuming</u>

Capture efficiency of 90% and Gd gamma detection efficiency of 74%.

Invisible muon B.G. is 35% of the SK-IV invisible muon BG.

Min/nominal/Max are due to uncertainties in astronomy.

Background: ~18 ev.

SRN flux from Horiuchi et al. PRD, 79, 083013 (2009)

<u>EGADS</u>

Evaluating Gadolinium's Action on Detector Systems

200 m³ tank with 240 PMTs

Transparency measurement (UDEAL)

15m³ tank to dissolve Gd

Gd water circulation system (purify water with Gd)

Transparency of Gd-loaded water (before mounting PMTs)

The light left at 15 m in the 200m³ tank (stainless steel) was ~69% for 0.2% $Gd_2(SO_4)_3$, which corresponds to ~84% of pure water.

240 PMTs were mounted in the 200 m³ tank in this summer.

Pure water circulation was started. Gd-loaded test is expected start soon.

Super-K: Angular distribution (without Gd)

<u>Without v_ep</u> identification by neutron tagging

SN at 10kpc

Super-K: Angular distribution (with Gd)

Future Large Volume Detectors

Water Purificatiom System

Hyper-Kamiokande (0.74 Mton Water Cherenkov)

LBNE (US)

LBNO (Europe)

Electrical Machinery Boon

Access Tunnel

(20kton Liq. Ar, 50kton Liq. scintillator) JUNO(Chin

Total Longth 247.511 (Comparisonnia)

Cavity (Lining)

Supernova events at Hyper-Kamiokande

~200,000 $\overline{v_e}$ +p events 7,000~8000 v+e events ~10,000 v_e +¹⁶O events

for 10 kpc supernova

30~50 events even for M31 supernova

Each band covers, no osc., N.H. and I.H. cases

Hyper-K: Neutronization burst

<u>(e⁻+p→n+v_e)</u>

Number of events from neutronization burst is 20~130 events for SN@10kpc. $\overline{v_e}p$ events during this 10msec is about 190 - 200 events. N.H. +adiamacitc case: neutronization=~20ev., $\overline{v_e}p$ = ~350 ev.(~35 for SN direction).

SASI Detection Perspective

Their 3D 27 M_{SUN} progenitor shows pronounced SASI.

SASI sinusoidal modulation of the neutrino signal will be detectable by IceCube and Hyper-K.

I.Tamborra et al., arXiv:1307.7936

Expected signal in Liquid Ar

For 34 kton Liq. Ar SN @ 10 kpc

Interactions, as a function of neutrino energy

Channel	No of events (observed), GKVM, 34 kton	No. of events (observed), Livermore	
Nue-Ar40	2848	2308	
Nuebar- Ar40	134	194	Ň
ES	178	296	
Total	3160	2798	

Dominated by ν_{e}

From K. Scholberg

If Betelgeuse explodes...

Image credits: © 2010 Haubois / Perrin (LESIA, Paris Observatory)

Betelgeuse shrank by 15% in 15 years. (cf. *ApJ* **697**, L127)

It may explode tomorrow or 500,000 years from now. (from Nomoto-san)

It is only ~640 light-years (0.2kpc) from us.

New electronics for Betelgeuse at Super-K

Data flow to the new electronics

- If Betelgeuse explodes,
 - #events@SK: > 30M / 10s
 - Max. event rate: > 30MHz
- Current DAQ
 - Handles up to 6M events/10s
 - Records only first 20%
 - Bottleneck: disk access speed

The new electronics will record sum of PMT hits with 60kHz continuously, and 60MHz data for ~1 minute around the burst.

Thermal Neutrinos during Si burning phase

A.Odrzywolek, M.Misiaszek, M.Kutschera, AIP Conf. Proc. 944, 109(2007)

In this paper, distance is assumed to be 0.13kpc. So, the numbers must be reduced to 50%. Neutrinos during the Si-burning phase can be used for precursor of core collapse.

Conclusions

Supernova burst neutrinos

- Many detectors in the world with various types of signals.
- ~8,000 events expected at Super-K for 10kpc SN.
- High precision time profile by Icecube.
- ~5 deg. accuracy in direction of supernova by Super-K neutron-electron scattering events.
- Onset time with ~2 msec resolution by Super-K and IceCube.
- Supernova relic Neutrinos
 - R&D for GADZOOKS! project is ongoing.
- Nearby (Betelgeuse) supernova
 - New electronics at Super-K.
 - KamLAND and Super-K(GADZOOKS!) can get precursor using Si-burning neutrinos.