GRB conference @ YITP Kyoto 13. Nov. 2013

Nucleosynthetic signatures in magneto-rotational driven core-collapse supernovae

European Research Council

Established by the European Commission

<u>contents</u>

• introduction

- origin of heavy elements
- energetic supernovae, GRBs, and nucleosynthesis
- <u>magneto-rotational driven supernovae</u>
 - MHD-SN explosion models
 - r-process
 - explosive nucleosynthesis and observation

• <u>conclusion</u>

based on N. Nishimura, T. Takiwaki, and F.-K. Thieleman (2013 in prep.) *r*-process: "cosmic alchemy"

origin of heavy elements (with s-process)
e.g., gold, actinide

- rapid-neutron captures (related to unstable isotopes)
- -Astronomical sites (?)
 - -non-standard Supernova (SN)
 - neutron star mergers

Solar system abundance Anders & Grevesse (1989)

r-process: physics & astronomical sites

-high neutron density

- -neutron rich matter from NS?
- explosive events
 - (<< 1 min, neutron's half life)
- -separated from the s-process

- Astronomical sites

- -core-collapse supernova (formation of NS)
- -merger of NS-NS / BH-NS binary
 - → short GRB? (talk by Wanajo)
- "collapsar" jet or disk
 - → long GRB? (talk by Surman)

<u>Core-Collapse Supernovae: > 10 M_{sun}</u>

core-collapse supernovae

supernova ejecta \rightarrow iron group elements including ⁵⁶Ni
 neutrino-driven proto-neutron star wind

- difficult to have suitable condition for the r-process
- not very neutron-rich (> 0.4)
- not high entropy (< 200)
- supported by several studies
 Fischer et al. 2010,
 Hüdepohl et al. 2010 etc.

\rightarrow alternative energetic supernova scenario?

Magnetohydrodynamic (MHD) SNe and magnetars

r-process studies

•2D MHD-SNe

- •Nishimura et al. 2006
- •Fujimoto, Nishimura, and Hashimoto 2008
- (central Black-Hole and disk)
- •3D MHD-SNe with neutrino
 - •Winteler et al. 2012

hypernova/jet-like SN

•<u>Magnetar</u>

•strong magnetic field $\sim 10^{15} \text{ G}$

(\sim 1 % of all neutron stars)

- •<u>Magneto-driven Supernovae?</u> •GRB central engine
 - •Hypernovae

3D MHD simulation Winteler et al. (2012)

3D-MHD model with leakage scheme

Winteler, Käppeli, Perego, Arcones, Vasset, Nishimura, Liebendörfer, Thielemann Basel collaboration) 2012, ApJL

red: neutrino absorption (green: no neutrino) 120Ejected Mass $[10^{-5} M_{\odot}]$ 10080 60 40 200 0.200.250.100.150.300.350.40Ye

MHD code :

FISH (Käppeli et al. 2011) progenitor:

15Msun (Heger&Woosely 2002) magnetic fields :

poloidal 5×10¹² [G] (initial)

r-process in MHD-SNe: "prompt" vs "delayed"

- more long-term simulation model
- robustness of resulting r-process
- dependency on the explosion mechanism
- axisymmetric
- special relativistic MHD
- leakage scheme for neutrino cooling
- 25M_{sun} WR star (Heger & Woosley)

time duration of explosion delayed

		T/ W (%)				
		0.25%	1.0%	4.0%		
$B_0(Gauss)$	$10^{10}\mathrm{G}$	122 ms	96 ms	104 ms		
	$10^{11}\mathrm{G}$	72 ms	27 ms	32 ms		
	$10^{12}\mathrm{G}$	32 ms	20 ms	25 ms		
			pro	prompt		

Takiwaki et al. 2009

Ejected matter: ejection motion and Ye

path of ejected tracer particles (post-process)

Ye evolution for different ejecta

r-process in MHD-SNe: "prompt" vs "delayed"

successful r-process (prompt) r-process is suppressed up to second peak (delayed)

r-process result (2/3): "weak" r-elements

"weak" r-process pattern (HD122563; Honda 2006)

nucleosynthesis result: key amounts

	B11TW0.25	B11TW1.00	B12TW0.25	B12TW1.00	B12TW4.00
type	delayed	prompt	prompt	prompt	prompt
ejected mass (10 ⁻² M _{sun})	1.27	6.88	3.42	9.48	9.38
r-proc. mass (10 ⁻³ M _{sun})	0.963	1.54	1.15	2.05	2.67
⁵⁶ Ni (10 ⁻² M _{sun})	1.07*	_	0.63*	1.19*	1.21*

* minimum values (component in the first shock wave)

- significant amount of r-process matter compared with normal supernova (10⁻⁵ M_{sun} from PNS wind)
- low event rate (\sim 0.1 1 % of all supernova)

have impact on chemical evolution/obervation

<u>Summary</u>

- MHD-SNe are still possible candidate for r-process
 prompt-magnetic-jets : "main" r-process
 delayed-magnetic-jets : "weak" r-process?
- •Large amount of r-process elements ($\sim 10^{-3} M_{sun}$)
- •MHD-SNe are faint ? and have relation to peculiar SN/XRF.

remaining problem

- Long-term simulations
- dependence of initial rotations and magnetic fields
- MHD-SN always produce "solar" r-process pattern?
- uncertainties of micro physics (neutrino, ...)
- cases of large off-axisymmetry
- physics of MHD amplification process (MRI, reconection ..)

• • •