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Context
How do stellar black holes form?

Stellar-mass black holes form in the collapse of massive
stars

Beginning of collapse triggered by mass-limit of iron core

Collapse & bounce, then collapse of the proto-neutron star
triggered by accretion

⇒very similar scenario to core-collapse supernova
⇒central engine for gamma-ray bursts (collapsar model)
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Context

Collapse to black hole from stellar progenitor has already been
studied (e.g. Sumiyoshi et al. (2007), Fischer et al. (2009),
O’Connor & Ott (2011), Ugliano et al. (2012). . . ).

10
9

10
10

10
11

10
12

10
13

10
14

10
15

10
16

10
17

ce
n
tr

al
 d

en
si

ty
 [

g
/c

m
3
]

1.51.00.50.0

time after bounce [sec]

250

200

150

100

50

0

te
m

p
er

at
u

re
 [

M
eV

]
1.51.00.50.0

time after bounce [sec]

40M� progenitor, from Sumiyoshi et al. (2007)

⇒much higher densities (above nuclear saturation density) and
temperatures (tens of MeV) than in supernova simulations.



Aims. . .
High density & temperature conditions ⇒additional particles
should appear (observed on Earth).

How many “exotic” particles could appear on the way to
the black hole?

What is their influence on the collapse?

What is their observational signature? (neutrinos,
gravitational waves)

Reverse question:

Can we infer nuclear matter composition from observations
of black hole formation?

LIGO Virgo KAGRA



Numerical model



Physical framework

Spherical or axial symmetry (1D/2D runs).

Relativistic hydrodynamics, with perfect-fluid stress-energy
tensor.

General relativity in 3+1 formulation. Isotropic gauge for
1D, conformally-flat condition (CFC) in 2D.

Apparent horizon finder (Lin & Novak 2007).

Microphysical equation of state from Oertel et al. (2012).

Deleptonization and neutrino leakage.

Gravitational waves extracted with the modified
quadrupole formula (2D).



Numerical tools

CoCoNuT code (Dimmelmeier et al. 2005):

Potentially 3D code, but used only in 1D or 2D (not fully
parallel, yet);

high resolution-shock capturing schemes for the relativistic
hydrodynamics (e.g. Font 2008)⇒conservative-form
hydrodynamic equations;

multi-domain pseudo-spectral methods for the solution of
Einstein equations (e.g. Grandclément & Novak 2009)
⇒non-linear coupled elliptic system;

interpolation and filtering to avoid Gibbs phenomenon.



Neutrino leakage

Only one opaque (⇒fluid) zone and one transparent
(⇒free-streaming) zone (e.g. van Riper et al. 1981)

No transport, cheap in CPU time, but number of
approximations and drawbacks

No semi-transparent regime, no self-consistent heating
⇒not good to revive the shock.

⇒computation of “optical” depth for three species of neutrinos:
νe, ν̄e, νx. Loss of energy & momentum taken into account.

Creation processes

p+ e− → νe + n

(A,Z)+e− → (A,Z−1)+νe

e− + e+ → νi + ν̄i

γ̃ → νi + ν̄i

Opacity processes

νi +N → νi +N

νi + (A,Z)→ νi + (A,Z)

νe + n→ p+ e−

ν̄e + p→ n+ e+



Equation of state



Nuclear model

Nucleon - nucleon interaction uncertain and difficult to model:
use different interactions.

Model by Lattimer & Swesty (1991)

Effective (Skyrme-type) model for the nucleon-nucleon
interaction

Constituents: n, p, e−, e+, γ, α,A

Incompressibility K = 220 MeV.

⇒ other parameters involved: B, J,K ′, L, constrained by
nuclear experiments, but defined at saturation density n0 and
for symmetric matter.
⇒ one of the two mainly used EoSs, other: Shen et al. (1998),
based on a relativistic mean field model.



Additional particles
Oertel et al. (2012), Gulminelli et al. (2012)

Particle accelerators and heavy-ion colliders show the presence
of pions and hyperons at high densities and temperatures.
⇒ these “additional” particles should appear in core-collapse
phenomena

EoS LS220+pions

Pions π−, π0, π+

free gas

EoS LS220+hyperons

Λ hyperons

interactions adapted from
Balberg & Gal (1997)

contains a first order phase
transition to hyperonic matter

Hadronic interaction different from previous studies with
additional particles (Sumiyoshi et al. 2009, Shen et al. 2011),
where a relativistic mean field model was used.



Neutron star mass constraints

Classical result: with hyperons, maximum neutron star
mass ∼ 1.4M�.

⇒Absolutely incompatible with observations :

Mass constraint

M = 2.01± 0.04 M� Antoniadis et al. (2013)

M = 1.97± 0.04 M� Demorest et al. (2010)

Solutions:

Stiffen (modify) the EOS, with short-range repulsion via
Y Y interaction

Let quarks appear early enough. . .

In our cases, static neutron stars computed with T = 0 and
β-equilibrium:

EoS LS220+pions maximal mass: M = 1.95 M�

EoS LS220+hyperons maximal mass: M = 1.91 M�



Parameters & Initial models



Initial setup
Progenitor

From Woosley et al. (2002), 40M�
ZAMS and 10−4× solar metallicity

Leakage

β-equilibrium density 1.2× 1012 g.cm−2

ν escape time tesc = 3(Rν−sphere − r)τ
power lost by the fluid in the trapped

regime QE = −1.1 〈εν〉
Yν
tesc

EoS

Values of the parameters for Y −N and
Y − Y interactions compatible with
hyperonic data and PSR J 1614-2230
(marginally).



Black hole formation



Spherical symmetry
with pions
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Spherical symmetry
with hyperons
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Phase transition
Spherical symmetry
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Phase transition only reached for progenitors with high
mass accretion rate (low metallicity),

Induces a “mini-collapse” followed by oscillations of the
PNS,

No second shock wave as in simulations with phase
transition to quark matter (Sagert et al. 2009).



Phase transition
Rotational symmetry

2D in axisymmetry

Progenitor rotation profile : slow and differential

All other settings similar to 1D settings
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Gravitational waves

With the modified quadrupole formula
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Gravitational waves

With the modified quadrupole formula
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Summary / Outlook

EoS for core-collapse based on Lattimer & Swesty (1991),
with additional particles (π,Λ), compatible with recent
observations of 2M� neutron stars.

Softens the PNS, which collapses more rapidly and
eventually undergoes a phase transition to hyperonic
matter.

Phase transition “softened” in 2D simulations
⇒implications for QGP phase transition?

Possibly observable with gravitational waves.

Improvement of resolution in 2D

Better (full?) neutrino transport (Peres et al.
arXiv:1307.1666)
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